ActionDiffusion_WACV2025/model/diffusion_act_dist.py
2024-12-02 15:42:58 +01:00

222 lines
9.6 KiB
Python

import random
import numpy as np
import torch
from torch import nn
from .helpers import (
cosine_beta_schedule,
extract,
condition_projection,
Losses,
)
class GaussianDiffusion(nn.Module):
def __init__(self, model, horizon, observation_dim, action_dim, class_dim, act_mean, act_std, n_timesteps=200,
loss_type='Weighted_MSE', clip_denoised=False, ddim_discr_method='uniform',
):
super().__init__()
self.horizon = horizon
self.observation_dim = observation_dim
self.action_dim = action_dim
self.class_dim = class_dim
self.model = model
betas = cosine_beta_schedule(n_timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_cumprod_prev = torch.cat([torch.ones(1), alphas_cumprod[:-1]])
self.n_timesteps = n_timesteps
self.clip_denoised = clip_denoised
self.eta = 0.0
self.random_ratio = 1.0
self.act_mean = act_mean
self.act_std = act_std
# ---------------------------ddim--------------------------------
ddim_timesteps = 10
if ddim_discr_method == 'uniform':
c = n_timesteps // ddim_timesteps
ddim_timestep_seq = np.asarray(list(range(0, n_timesteps, c)))
elif ddim_discr_method == 'quad':
ddim_timestep_seq = (
(np.linspace(0, np.sqrt(n_timesteps), ddim_timesteps)) ** 2
).astype(int)
else:
assert RuntimeError()
self.ddim_timesteps = ddim_timesteps
self.ddim_timestep_seq = ddim_timestep_seq
# ----------------------------------------------------------------
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
self.register_buffer('posterior_variance', posterior_variance)
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped',
torch.log(torch.clamp(posterior_variance, min=1e-20)))
self.register_buffer('posterior_mean_coef1',
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer('posterior_mean_coef2',
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))
self.loss_type = loss_type
self.loss_fn = Losses[loss_type](None, self.action_dim, self.class_dim)
# ------------------------------------------ sampling ------------------------------------------#
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, cond, task_label, t):
#x_recon = self.model(x, t)
x_recon = self.model(x, t, task_label)
if self.clip_denoised:
x_recon.clamp(-1., 1.)
else:
assert RuntimeError()
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
return \
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) \
/ extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
@torch.no_grad()
def p_sample_ddim(self, x, cond, avg_mask, task_label, t, t_prev, noise, if_prev=False, if_avg_mask=False):
b, *_, device = *x.shape, x.device
#x_recon = self.model(x, t) # without class condition
x_recon = self.model(x, t, task_label)
if self.clip_denoised:
x_recon.clamp(-1., 1.)
else:
assert RuntimeError()
eps = self._predict_eps_from_xstart(x, t, x_recon)
alpha_bar = extract(self.alphas_cumprod, t, x.shape)
if if_prev:
alpha_bar_prev = extract(self.alphas_cumprod_prev, t_prev, x.shape)
else:
alpha_bar_prev = extract(self.alphas_cumprod, t_prev, x.shape)
sigma = (
self.eta
* torch.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
* torch.sqrt(1 - alpha_bar / alpha_bar_prev)
)
mean_pred = (
x_recon * torch.sqrt(alpha_bar_prev)
+ torch.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
)
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return mean_pred + nonzero_mask * sigma * noise
@torch.no_grad()
def p_sample(self, x, cond, task_label, t, noise):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, cond=cond, task_label=task_label, t=t)
#noise = torch.randn_like(x) * self.random_ratio
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, cond, avg_mask, task_label, if_jump, if_avg_mask):
device = self.betas.device
batch_size = len(cond[0])
horizon = self.horizon
shape = (batch_size, horizon, self.class_dim + self.action_dim + self.observation_dim)
mean = torch.zeros(shape, device=device)
std = torch.zeros(shape, device=device)
for i in range(shape[1]):
std[:,i,:] = std[:,i,:] + self.act_std[i]
mean[:,i,:] = mean[:,i,:] + self.act_mean[i]
x = torch.normal(mean, std)
noise = x
x = condition_projection(x, cond, self.action_dim, self.class_dim)
if not if_jump:
for i in reversed(range(0, self.n_timesteps)):
timesteps = torch.full((batch_size,), i, device=device, dtype=torch.long)
x = self.p_sample(x, cond, task_label, timesteps)
x = condition_projection(x, cond, self.action_dim, self.class_dim)
else:
for i in reversed(range(0, self.ddim_timesteps)):
timesteps = torch.full((batch_size,), self.ddim_timestep_seq[i], device=device, dtype=torch.long)
if i == 0:
timesteps_prev = torch.full((batch_size,), 0, device=device, dtype=torch.long)
x = self.p_sample_ddim(x, cond, avg_mask, task_label, timesteps, timesteps_prev, noise, True, if_avg_mask)
else:
timesteps_prev = torch.full((batch_size,), self.ddim_timestep_seq[i-1], device=device, dtype=torch.long)
x = self.p_sample_ddim(x, cond, avg_mask, task_label, timesteps, timesteps_prev, noise, if_avg_mask)
x = condition_projection(x, cond, self.action_dim, self.class_dim)
return x
# ------------------------------------------ training ------------------------------------------#
def q_sample(self, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start) * self.random_ratio
sample = (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
return sample
def p_losses(self, x_start, cond, t, act_emb_noise, task_label):
noise = act_emb_noise * self.random_ratio
#print('act noise shape', noise.shape)
#print('x_start shape', x_start.shape)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) # for diffusion, should be removed for Noise and Deterministic
x_noisy = condition_projection(x_noisy, cond, self.action_dim, self.class_dim)
#x_recon = self.model(x_noisy, t) # without class condition
x_recon = self.model(x_noisy, t, task_label) # with class condition
#print('x_recon',x_recon.shape)
x_recon = condition_projection(x_recon, cond, self.action_dim, self.class_dim)
loss = self.loss_fn(x_recon, x_start)
return loss
def loss(self, x, cond, act_emb_noise, task_label):
batch_size = len(x)
t = torch.randint(0, self.n_timesteps, (batch_size,), device=x.device).long() # for diffusion
return self.p_losses(x, cond, t, act_emb_noise, task_label)
def forward(self, cond, avg_mask, task_label, if_jump=False, if_avg_mask=False):
return self.p_sample_loop(cond, avg_mask, task_label, if_jump, if_avg_mask)