1086 lines
42 KiB
Python
1086 lines
42 KiB
Python
|
"""
|
||
|
This code started out as a PyTorch port of Ho et al's diffusion models:
|
||
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py
|
||
|
|
||
|
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
|
||
|
"""
|
||
|
|
||
|
from config_base import BaseConfig
|
||
|
import math
|
||
|
|
||
|
import numpy as np
|
||
|
import torch as th
|
||
|
from model import *
|
||
|
from model.nn import mean_flat
|
||
|
from typing import NamedTuple, Tuple
|
||
|
from choices import *
|
||
|
from torch.cuda.amp import autocast
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from dataclasses import dataclass
|
||
|
|
||
|
from model.MI import *
|
||
|
|
||
|
@dataclass
|
||
|
class GaussianDiffusionBeatGansConfig(BaseConfig):
|
||
|
gen_type: GenerativeType
|
||
|
betas: Tuple[float]
|
||
|
model_type: ModelType
|
||
|
model_mean_type: ModelMeanType
|
||
|
model_var_type: ModelVarType
|
||
|
loss_type: LossType
|
||
|
rescale_timesteps: bool
|
||
|
fp16: bool
|
||
|
train_pred_xstart_detach: bool = True
|
||
|
|
||
|
def make_sampler(self):
|
||
|
return GaussianDiffusionBeatGans(self)
|
||
|
|
||
|
|
||
|
class GaussianDiffusionBeatGans:
|
||
|
"""
|
||
|
Utilities for training and sampling diffusion models.
|
||
|
|
||
|
Ported directly from here, and then adapted over time to further experimentation.
|
||
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
||
|
|
||
|
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
||
|
starting at T and going to 1.
|
||
|
:param model_mean_type: a ModelMeanType determining what the model outputs.
|
||
|
:param model_var_type: a ModelVarType determining how variance is output.
|
||
|
:param loss_type: a LossType determining the loss function to use.
|
||
|
:param rescale_timesteps: if True, pass floating point timesteps into the
|
||
|
model so that they are always scaled like in the
|
||
|
original paper (0 to 1000).
|
||
|
"""
|
||
|
def __init__(self, conf: GaussianDiffusionBeatGansConfig):
|
||
|
self.conf = conf
|
||
|
self.model_mean_type = conf.model_mean_type
|
||
|
self.model_var_type = conf.model_var_type
|
||
|
self.loss_type = conf.loss_type
|
||
|
self.rescale_timesteps = conf.rescale_timesteps
|
||
|
|
||
|
betas = np.array(conf.betas, dtype=np.float64)
|
||
|
self.betas = betas
|
||
|
assert len(betas.shape) == 1, "betas must be 1-D"
|
||
|
assert (betas > 0).all() and (betas <= 1).all()
|
||
|
|
||
|
self.num_timesteps = int(betas.shape[0])
|
||
|
|
||
|
alphas = 1.0 - betas
|
||
|
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
||
|
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
||
|
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
|
||
|
assert self.alphas_cumprod_prev.shape == (self.num_timesteps, )
|
||
|
|
||
|
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
||
|
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
||
|
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
|
||
|
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
||
|
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod -
|
||
|
1)
|
||
|
|
||
|
self.posterior_variance = (betas * (1.0 - self.alphas_cumprod_prev) /
|
||
|
(1.0 - self.alphas_cumprod))
|
||
|
self.posterior_log_variance_clipped = np.log(
|
||
|
np.append(self.posterior_variance[1], self.posterior_variance[1:]))
|
||
|
self.posterior_mean_coef1 = (betas *
|
||
|
np.sqrt(self.alphas_cumprod_prev) /
|
||
|
(1.0 - self.alphas_cumprod))
|
||
|
self.posterior_mean_coef2 = ((1.0 - self.alphas_cumprod_prev) *
|
||
|
np.sqrt(alphas) /
|
||
|
(1.0 - self.alphas_cumprod))
|
||
|
|
||
|
def training_losses(self,
|
||
|
model: Model,
|
||
|
x_start: th.Tensor,
|
||
|
t: th.Tensor,
|
||
|
model_kwargs=None,
|
||
|
noise: th.Tensor = None,
|
||
|
user_label=None,
|
||
|
lossbetas=None):
|
||
|
"""
|
||
|
Compute training losses for a single timestep.
|
||
|
|
||
|
:param model: the model to evaluate loss on.
|
||
|
:param x_start: the [N x C x ...] tensor of inputs.
|
||
|
:param t: a batch of timestep indices.
|
||
|
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
||
|
pass to the model. This can be used for conditioning.
|
||
|
:param noise: if specified, the specific Gaussian noise to try to remove.
|
||
|
:return: a dict with the key "loss" containing a tensor of shape [N].
|
||
|
Some mean or variance settings may also have other keys.
|
||
|
"""
|
||
|
if model_kwargs is None:
|
||
|
model_kwargs = {}
|
||
|
noise = th.randn_like(x_start)
|
||
|
x_t = self.q_sample(x_start, t, noise=noise)
|
||
|
|
||
|
terms = {'x_t': x_t}
|
||
|
|
||
|
if self.loss_type in [
|
||
|
LossType.mse,
|
||
|
LossType.l1,
|
||
|
]:
|
||
|
with autocast(self.conf.fp16):
|
||
|
model_forward = model.forward(x=x_t,
|
||
|
t=self._scale_timesteps(t),
|
||
|
x_start=x_start,
|
||
|
**model_kwargs)
|
||
|
model_output = model_forward.pred
|
||
|
|
||
|
_model_output = model_output
|
||
|
if self.conf.train_pred_xstart_detach:
|
||
|
_model_output = _model_output.detach()
|
||
|
p_mean_var = self.p_mean_variance(
|
||
|
model=DummyModel(pred=model_output),
|
||
|
x=x_t,
|
||
|
t=t,
|
||
|
clip_denoised=False)
|
||
|
terms['pred_xstart'] = p_mean_var['pred_xstart']
|
||
|
target_types = {
|
||
|
ModelMeanType.eps: noise,
|
||
|
}
|
||
|
target = target_types[self.model_mean_type]
|
||
|
assert model_output.shape == target.shape == x_start.shape
|
||
|
|
||
|
if self.loss_type == LossType.mse:
|
||
|
if self.model_mean_type == ModelMeanType.eps:
|
||
|
assert (x_start >= 0).all() and (x_start <= 1).all()
|
||
|
assert (terms['pred_xstart'] >= 0).all() and (terms['pred_xstart'] <= 1).all()
|
||
|
assert terms['pred_xstart'].requires_grad
|
||
|
|
||
|
terms["mse"] = th.zeros((x_start.shape[0]), device=x_start.device)
|
||
|
if lossbetas['recon']!=0:
|
||
|
input_mse = mean_flat((x_start - terms['pred_xstart'])**2)
|
||
|
assert input_mse.requires_grad and input_mse.grad_fn is not None
|
||
|
terms["mse"]+=input_mse*lossbetas['recon']
|
||
|
if lossbetas['noise']!=0:
|
||
|
noise_mse = mean_flat((model_output - target)**2)
|
||
|
assert noise_mse.requires_grad and noise_mse.grad_fn is not None
|
||
|
terms["mse"]+=noise_mse*lossbetas['noise']
|
||
|
if lossbetas['user']!=0:
|
||
|
user_cross = F.cross_entropy(model_forward.user_pred, user_label, reduction='none')
|
||
|
assert user_cross.requires_grad and user_cross.grad_fn is not None
|
||
|
terms["mse"]+=user_cross*lossbetas['user']
|
||
|
if lossbetas['nonuser']!=0:
|
||
|
non_user_cross = F.cross_entropy(model_forward.non_user_pred, user_label, reduction='none')
|
||
|
assert non_user_cross.requires_grad and non_user_cross.grad_fn is not None
|
||
|
terms["mse"]+=non_user_cross*lossbetas['nonuser']
|
||
|
if 'mi' in lossbetas.keys() and lossbetas['mi']!=0:
|
||
|
user_emb = model_forward.cond[:, :model_forward.cond.shape[1]//2]
|
||
|
non_user_emb = model_forward.cond[:, model_forward.cond.shape[1]//2:]
|
||
|
minval = th.min(model_forward.cond)
|
||
|
maxval = th.max(model_forward.cond)
|
||
|
mutual_info = MI_pytorch(bins=20, min=minval, max=maxval, sigma=100, reduction='individual').to(user_emb.device)
|
||
|
mi = mutual_info(user_emb, non_user_emb)
|
||
|
assert mi.requires_grad and mi.grad_fn is not None
|
||
|
terms["mse"]+=mi*lossbetas['mi']
|
||
|
else:
|
||
|
raise NotImplementedError()
|
||
|
elif self.loss_type == LossType.l1:
|
||
|
terms["mse"] = mean_flat((target - model_output).abs())
|
||
|
else:
|
||
|
raise NotImplementedError()
|
||
|
if "vb" in terms:
|
||
|
terms["loss"] = terms["mse"] + terms["vb"]
|
||
|
else:
|
||
|
terms["loss"] = terms["mse"]
|
||
|
else:
|
||
|
raise NotImplementedError(self.loss_type)
|
||
|
|
||
|
return terms
|
||
|
|
||
|
def sample(self,
|
||
|
model: Model,
|
||
|
shape=None,
|
||
|
noise=None,
|
||
|
cond=None,
|
||
|
x_start=None,
|
||
|
clip_denoised=True,
|
||
|
model_kwargs=None,
|
||
|
progress=False):
|
||
|
"""
|
||
|
Args:
|
||
|
x_start: given for the autoencoder
|
||
|
"""
|
||
|
if model_kwargs is None:
|
||
|
model_kwargs = {}
|
||
|
if self.conf.model_type.has_autoenc():
|
||
|
model_kwargs['x_start'] = x_start
|
||
|
model_kwargs['cond'] = cond
|
||
|
|
||
|
if self.conf.gen_type == GenerativeType.ddpm:
|
||
|
return self.p_sample_loop(model,
|
||
|
shape=shape,
|
||
|
noise=noise,
|
||
|
clip_denoised=clip_denoised,
|
||
|
model_kwargs=model_kwargs,
|
||
|
progress=progress)
|
||
|
elif self.conf.gen_type == GenerativeType.ddim:
|
||
|
return self.ddim_sample_loop(model,
|
||
|
shape=shape,
|
||
|
noise=noise,
|
||
|
clip_denoised=clip_denoised,
|
||
|
model_kwargs=model_kwargs,
|
||
|
progress=progress)
|
||
|
else:
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def q_mean_variance(self, x_start, t):
|
||
|
"""
|
||
|
Get the distribution q(x_t | x_0).
|
||
|
|
||
|
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
||
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
||
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
||
|
"""
|
||
|
mean = (
|
||
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) *
|
||
|
x_start)
|
||
|
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t,
|
||
|
x_start.shape)
|
||
|
log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod,
|
||
|
t, x_start.shape)
|
||
|
return mean, variance, log_variance
|
||
|
|
||
|
def q_sample(self, x_start, t, noise=None):
|
||
|
"""
|
||
|
Diffuse the data for a given number of diffusion steps.
|
||
|
|
||
|
In other words, sample from q(x_t | x_0).
|
||
|
|
||
|
:param x_start: the initial data batch.
|
||
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
||
|
:param noise: if specified, the split-out normal noise.
|
||
|
:return: A noisy version of x_start.
|
||
|
"""
|
||
|
if noise is None:
|
||
|
noise = th.randn_like(x_start)
|
||
|
assert noise.shape == x_start.shape
|
||
|
return (
|
||
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) *
|
||
|
x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod,
|
||
|
t, x_start.shape) * noise)
|
||
|
|
||
|
def q_posterior_mean_variance(self, x_start, x_t, t):
|
||
|
"""
|
||
|
Compute the mean and variance of the diffusion posterior:
|
||
|
|
||
|
q(x_{t-1} | x_t, x_0)
|
||
|
|
||
|
"""
|
||
|
assert x_start.shape == x_t.shape
|
||
|
posterior_mean = (
|
||
|
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) *
|
||
|
x_start +
|
||
|
_extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) *
|
||
|
x_t)
|
||
|
posterior_variance = _extract_into_tensor(self.posterior_variance, t,
|
||
|
x_t.shape)
|
||
|
posterior_log_variance_clipped = _extract_into_tensor(
|
||
|
self.posterior_log_variance_clipped, t, x_t.shape)
|
||
|
assert (posterior_mean.shape[0] == posterior_variance.shape[0] ==
|
||
|
posterior_log_variance_clipped.shape[0] == x_start.shape[0])
|
||
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
||
|
|
||
|
def p_mean_variance(self,
|
||
|
model: Model,
|
||
|
x,
|
||
|
t,
|
||
|
clip_denoised=True,
|
||
|
denoised_fn=None,
|
||
|
model_kwargs=None):
|
||
|
"""
|
||
|
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
||
|
the initial x, x_0.
|
||
|
|
||
|
:param model: the model, which takes a signal and a batch of timesteps
|
||
|
as input.
|
||
|
:param x: the [N x C x ...] tensor at time t.
|
||
|
:param t: a 1-D Tensor of timesteps.
|
||
|
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
||
|
:param denoised_fn: if not None, a function which applies to the
|
||
|
x_start prediction before it is used to sample. Applies before
|
||
|
clip_denoised.
|
||
|
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
||
|
pass to the model. This can be used for conditioning.
|
||
|
:return: a dict with the following keys:
|
||
|
- 'mean': the model mean output.
|
||
|
- 'variance': the model variance output.
|
||
|
- 'log_variance': the log of 'variance'.
|
||
|
- 'pred_xstart': the prediction for x_0.
|
||
|
"""
|
||
|
if model_kwargs is None:
|
||
|
model_kwargs = {}
|
||
|
|
||
|
B, C = x.shape[:2]
|
||
|
assert t.shape == (B, )
|
||
|
with autocast(self.conf.fp16):
|
||
|
model_forward = model.forward(x=x,
|
||
|
t=self._scale_timesteps(t),
|
||
|
**model_kwargs)
|
||
|
model_output = model_forward.pred
|
||
|
|
||
|
if self.model_var_type in [
|
||
|
ModelVarType.fixed_large, ModelVarType.fixed_small
|
||
|
]:
|
||
|
model_variance, model_log_variance = {
|
||
|
ModelVarType.fixed_large: (
|
||
|
np.append(self.posterior_variance[1], self.betas[1:]),
|
||
|
np.log(
|
||
|
np.append(self.posterior_variance[1], self.betas[1:])),
|
||
|
),
|
||
|
ModelVarType.fixed_small: (
|
||
|
self.posterior_variance,
|
||
|
self.posterior_log_variance_clipped,
|
||
|
),
|
||
|
}[self.model_var_type]
|
||
|
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
||
|
model_log_variance = _extract_into_tensor(model_log_variance, t,
|
||
|
x.shape)
|
||
|
|
||
|
def process_xstart(x):
|
||
|
if denoised_fn is not None:
|
||
|
x = denoised_fn(x)
|
||
|
if clip_denoised:
|
||
|
return x.clamp(-1, 1)
|
||
|
return F.sigmoid(x)
|
||
|
|
||
|
if self.model_mean_type in [
|
||
|
ModelMeanType.eps,
|
||
|
]:
|
||
|
if self.model_mean_type == ModelMeanType.eps:
|
||
|
pred_xstart = process_xstart(
|
||
|
self._predict_xstart_from_eps(x_t=x, t=t,
|
||
|
eps=model_output))
|
||
|
else:
|
||
|
raise NotImplementedError()
|
||
|
model_mean, _, _ = self.q_posterior_mean_variance(
|
||
|
x_start=pred_xstart, x_t=x, t=t)
|
||
|
else:
|
||
|
raise NotImplementedError(self.model_mean_type)
|
||
|
|
||
|
assert (model_mean.shape == model_log_variance.shape ==
|
||
|
pred_xstart.shape == x.shape)
|
||
|
|
||
|
return {
|
||
|
"mean": model_mean,
|
||
|
"variance": model_variance,
|
||
|
"log_variance": model_log_variance,
|
||
|
"pred_xstart": pred_xstart,
|
||
|
'model_forward': model_forward,
|
||
|
}
|
||
|
|
||
|
def _predict_xstart_from_eps(self, x_t, t, eps):
|
||
|
assert x_t.shape == eps.shape
|
||
|
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t,
|
||
|
x_t.shape) * x_t -
|
||
|
_extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t,
|
||
|
x_t.shape) * eps)
|
||
|
|
||
|
def _predict_xstart_from_xprev(self, x_t, t, xprev):
|
||
|
assert x_t.shape == xprev.shape
|
||
|
return (
|
||
|
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape)
|
||
|
* xprev - _extract_into_tensor(
|
||
|
self.posterior_mean_coef2 / self.posterior_mean_coef1, t,
|
||
|
x_t.shape) * x_t)
|
||
|
|
||
|
def _predict_xstart_from_scaled_xstart(self, t, scaled_xstart):
|
||
|
return scaled_xstart * _extract_into_tensor(
|
||
|
self.sqrt_recip_alphas_cumprod, t, scaled_xstart.shape)
|
||
|
|
||
|
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
||
|
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t,
|
||
|
x_t.shape) * x_t -
|
||
|
pred_xstart) / _extract_into_tensor(
|
||
|
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
||
|
|
||
|
def _predict_eps_from_scaled_xstart(self, x_t, t, scaled_xstart):
|
||
|
"""
|
||
|
Args:
|
||
|
scaled_xstart: is supposed to be sqrt(alphacum) * x_0
|
||
|
"""
|
||
|
return (x_t - scaled_xstart) / _extract_into_tensor(
|
||
|
self.sqrt_one_minus_alphas_cumprod, t, x_t.shape)
|
||
|
|
||
|
def _scale_timesteps(self, t):
|
||
|
if self.rescale_timesteps:
|
||
|
return t.float() * (1000.0 / self.num_timesteps)
|
||
|
return t
|
||
|
|
||
|
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
||
|
"""
|
||
|
Compute the mean for the previous step, given a function cond_fn that
|
||
|
computes the gradient of a conditional log probability with respect to
|
||
|
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
||
|
condition on y.
|
||
|
|
||
|
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
||
|
"""
|
||
|
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs)
|
||
|
new_mean = (p_mean_var["mean"].float() +
|
||
|
p_mean_var["variance"] * gradient.float())
|
||
|
return new_mean
|
||
|
|
||
|
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
||
|
"""
|
||
|
Compute what the p_mean_variance output would have been, should the
|
||
|
model's score function be conditioned by cond_fn.
|
||
|
|
||
|
See condition_mean() for details on cond_fn.
|
||
|
|
||
|
Unlike condition_mean(), this instead uses the conditioning strategy
|
||
|
from Song et al (2020).
|
||
|
"""
|
||
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
||
|
|
||
|
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
||
|
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(
|
||
|
x, self._scale_timesteps(t), **model_kwargs)
|
||
|
|
||
|
out = p_mean_var.copy()
|
||
|
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
||
|
out["mean"], _, _ = self.q_posterior_mean_variance(
|
||
|
x_start=out["pred_xstart"], x_t=x, t=t)
|
||
|
return out
|
||
|
|
||
|
def p_sample(
|
||
|
self,
|
||
|
model: Model,
|
||
|
x,
|
||
|
t,
|
||
|
clip_denoised=True,
|
||
|
denoised_fn=None,
|
||
|
cond_fn=None,
|
||
|
model_kwargs=None,
|
||
|
):
|
||
|
"""
|
||
|
Sample x_{t-1} from the model at the given timestep.
|
||
|
|
||
|
:param model: the model to sample from.
|
||
|
:param x: the current tensor at x_{t-1}.
|
||
|
:param t: the value of t, starting at 0 for the first diffusion step.
|
||
|
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
||
|
:param denoised_fn: if not None, a function which applies to the
|
||
|
x_start prediction before it is used to sample.
|
||
|
:param cond_fn: if not None, this is a gradient function that acts
|
||
|
similarly to the model.
|
||
|
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
||
|
pass to the model. This can be used for conditioning.
|
||
|
:return: a dict containing the following keys:
|
||
|
- 'sample': a random sample from the model.
|
||
|
- 'pred_xstart': a prediction of x_0.
|
||
|
"""
|
||
|
out = self.p_mean_variance(
|
||
|
model,
|
||
|
x,
|
||
|
t,
|
||
|
clip_denoised=clip_denoised,
|
||
|
denoised_fn=denoised_fn,
|
||
|
model_kwargs=model_kwargs,
|
||
|
)
|
||
|
noise = th.randn_like(x)
|
||
|
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
||
|
)
|
||
|
if cond_fn is not None:
|
||
|
out["mean"] = self.condition_mean(cond_fn,
|
||
|
out,
|
||
|
x,
|
||
|
t,
|
||
|
model_kwargs=model_kwargs)
|
||
|
sample = out["mean"] + nonzero_mask * th.exp(
|
||
|
0.5 * out["log_variance"]) * noise
|
||
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
||
|
|
||
|
def p_sample_loop(
|
||
|
self,
|
||
|
model: Model,
|
||
|
shape=None,
|
||
|
noise=None,
|
||
|
clip_denoised=True,
|
||
|
denoised_fn=None,
|
||
|
cond_fn=None,
|
||
|
model_kwargs=None,
|
||
|
device=None,
|
||
|
progress=False,
|
||
|
):
|
||
|
"""
|
||
|
Generate samples from the model.
|
||
|
|
||
|
:param model: the model module.
|
||
|
:param shape: the shape of the samples, (N, C, H, W).
|
||
|
:param noise: if specified, the noise from the encoder to sample.
|
||
|
Should be of the same shape as `shape`.
|
||
|
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
||
|
:param denoised_fn: if not None, a function which applies to the
|
||
|
x_start prediction before it is used to sample.
|
||
|
:param cond_fn: if not None, this is a gradient function that acts
|
||
|
similarly to the model.
|
||
|
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
||
|
pass to the model. This can be used for conditioning.
|
||
|
:param device: if specified, the device to create the samples on.
|
||
|
If not specified, use a model parameter's device.
|
||
|
:param progress: if True, show a tqdm progress bar.
|
||
|
:return: a non-differentiable batch of samples.
|
||
|
"""
|
||
|
final = None
|
||
|
for sample in self.p_sample_loop_progressive(
|
||
|
model,
|
||
|
shape,
|
||
|
noise=noise,
|
||
|
clip_denoised=clip_denoised,
|
||
|
denoised_fn=denoised_fn,
|
||
|
cond_fn=cond_fn,
|
||
|
model_kwargs=model_kwargs,
|
||
|
device=device,
|
||
|
progress=progress,
|
||
|
):
|
||
|
final = sample
|
||
|
return final["sample"]
|
||
|
|
||
|
def p_sample_loop_progressive(
|
||
|
self,
|
||
|
model: Model,
|
||
|
shape=None,
|
||
|
noise=None,
|
||
|
clip_denoised=True,
|
||
|
denoised_fn=None,
|
||
|
cond_fn=None,
|
||
|
model_kwargs=None,
|
||
|
device=None,
|
||
|
progress=False,
|
||
|
):
|
||
|
"""
|
||
|
Generate samples from the model and yield intermediate samples from
|
||
|
each timestep of diffusion.
|
||
|
|
||
|
Arguments are the same as p_sample_loop().
|
||
|
Returns a generator over dicts, where each dict is the return value of
|
||
|
p_sample().
|
||
|
"""
|
||
|
if device is None:
|
||
|
device = next(model.parameters()).device
|
||
|
if noise is not None:
|
||
|
img = noise
|
||
|
else:
|
||
|
assert isinstance(shape, (tuple, list))
|
||
|
img = th.randn(*shape, device=device)
|
||
|
indices = list(range(self.num_timesteps))[::-1]
|
||
|
|
||
|
if progress:
|
||
|
from tqdm.auto import tqdm
|
||
|
|
||
|
indices = tqdm(indices)
|
||
|
|
||
|
for i in indices:
|
||
|
t = th.tensor([i] * len(img), device=device)
|
||
|
with th.no_grad():
|
||
|
out = self.p_sample(
|
||
|
model,
|
||
|
img,
|
||
|
t,
|
||
|
clip_denoised=clip_denoised,
|
||
|
denoised_fn=denoised_fn,
|
||
|
cond_fn=cond_fn,
|
||
|
model_kwargs=model_kwargs,
|
||
|
)
|
||
|
yield out
|
||
|
img = out["sample"]
|
||
|
|
||
|
def ddim_sample(
|
||
|
self,
|
||
|
model: Model,
|
||
|
x,
|
||
|
t,
|
||
|
clip_denoised=True,
|
||
|
denoised_fn=None,
|
||
|
cond_fn=None,
|
||
|
model_kwargs=None,
|
||
|
eta=0.0,
|
||
|
):
|
||
|
"""
|
||
|
Sample x_{t-1} from the model using DDIM.
|
||
|
|
||
|
Same usage as p_sample().
|
||
|
"""
|
||
|
out = self.p_mean_variance(
|
||
|
model,
|
||
|
x,
|
||
|
t,
|
||
|
clip_denoised=clip_denoised,
|
||
|
denoised_fn=denoised_fn,
|
||
|
model_kwargs=model_kwargs,
|
||
|
)
|
||
|
if cond_fn is not None:
|
||
|
out = self.condition_score(cond_fn,
|
||
|
out,
|
||
|
x,
|
||
|
t,
|
||
|
model_kwargs=model_kwargs)
|
||
|
|
||
|
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
||
|
|
||
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
||
|
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t,
|
||
|
x.shape)
|
||
|
sigma = (eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) *
|
||
|
th.sqrt(1 - alpha_bar / alpha_bar_prev))
|
||
|
noise = th.randn_like(x)
|
||
|
mean_pred = (out["pred_xstart"] * th.sqrt(alpha_bar_prev) +
|
||
|
th.sqrt(1 - alpha_bar_prev - sigma**2) * eps)
|
||
|
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
||
|
)
|
||
|
sample = mean_pred + nonzero_mask * sigma * noise
|
||
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
||
|
|
||
|
def ddim_reverse_sample(
|
||
|
self,
|
||
|
model: Model,
|
||
|
x,
|
||
|
t,
|
||
|
clip_denoised=True,
|
||
|
denoised_fn=None,
|
||
|
model_kwargs=None,
|
||
|
eta=0.0,
|
||
|
):
|
||
|
"""
|
||
|
Sample x_{t+1} from the model using DDIM reverse ODE.
|
||
|
"""
|
||
|
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
||
|
out = self.p_mean_variance(
|
||
|
model,
|
||
|
x,
|
||
|
t,
|
||
|
clip_denoised=clip_denoised,
|
||
|
denoised_fn=denoised_fn,
|
||
|
model_kwargs=model_kwargs,
|
||
|
)
|
||
|
eps = (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape)
|
||
|
* x - out["pred_xstart"]) / _extract_into_tensor(
|
||
|
self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
||
|
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
|
||
|
|
||
|
mean_pred = (out["pred_xstart"] * th.sqrt(alpha_bar_next) +
|
||
|
th.sqrt(1 - alpha_bar_next) * eps)
|
||
|
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
||
|
|
||
|
def ddim_reverse_sample_loop(
|
||
|
self,
|
||
|
model: Model,
|
||
|
x,
|
||
|
clip_denoised=True,
|
||
|
denoised_fn=None,
|
||
|
model_kwargs=None,
|
||
|
eta=0.0,
|
||
|
device=None,
|
||
|
):
|
||
|
if device is None:
|
||
|
device = next(model.parameters()).device
|
||
|
sample_t = []
|
||
|
xstart_t = []
|
||
|
T = []
|
||
|
indices = list(range(self.num_timesteps))
|
||
|
sample = x
|
||
|
for i in indices:
|
||
|
t = th.tensor([i] * len(sample), device=device)
|
||
|
with th.no_grad():
|
||
|
out = self.ddim_reverse_sample(model,
|
||
|
sample,
|
||
|
t=t,
|
||
|
clip_denoised=clip_denoised,
|
||
|
denoised_fn=denoised_fn,
|
||
|
model_kwargs=model_kwargs,
|
||
|
eta=eta)
|
||
|
sample = out['sample']
|
||
|
sample_t.append(sample)
|
||
|
xstart_t.append(out['pred_xstart'])
|
||
|
T.append(t)
|
||
|
|
||
|
return {
|
||
|
'sample': sample,
|
||
|
'sample_t': sample_t,
|
||
|
'xstart_t': xstart_t,
|
||
|
'T': T,
|
||
|
}
|
||
|
|
||
|
def ddim_sample_loop(
|
||
|
self,
|
||
|
model: Model,
|
||
|
shape=None,
|
||
|
noise=None,
|
||
|
clip_denoised=True,
|
||
|
denoised_fn=None,
|
||
|
cond_fn=None,
|
||
|
model_kwargs=None,
|
||
|
device=None,
|
||
|
progress=False,
|
||
|
eta=0.0,
|
||
|
):
|
||
|
"""
|
||
|
Generate samples from the model using DDIM.
|
||
|
|
||
|
Same usage as p_sample_loop().
|
||
|
"""
|
||
|
final = None
|
||
|
for sample in self.ddim_sample_loop_progressive(
|
||
|
model,
|
||
|
shape,
|
||
|
noise=noise,
|
||
|
clip_denoised=clip_denoised,
|
||
|
denoised_fn=denoised_fn,
|
||
|
cond_fn=cond_fn,
|
||
|
model_kwargs=model_kwargs,
|
||
|
device=device,
|
||
|
progress=progress,
|
||
|
eta=eta,
|
||
|
):
|
||
|
final = sample
|
||
|
return final["sample"]
|
||
|
|
||
|
def ddim_sample_loop_progressive(
|
||
|
self,
|
||
|
model: Model,
|
||
|
shape=None,
|
||
|
noise=None,
|
||
|
clip_denoised=True,
|
||
|
denoised_fn=None,
|
||
|
cond_fn=None,
|
||
|
model_kwargs=None,
|
||
|
device=None,
|
||
|
progress=False,
|
||
|
eta=0.0,
|
||
|
):
|
||
|
"""
|
||
|
Use DDIM to sample from the model and yield intermediate samples from
|
||
|
each timestep of DDIM.
|
||
|
|
||
|
Same usage as p_sample_loop_progressive().
|
||
|
"""
|
||
|
if device is None:
|
||
|
device = next(model.parameters()).device
|
||
|
if noise is not None:
|
||
|
img = noise
|
||
|
else:
|
||
|
assert isinstance(shape, (tuple, list))
|
||
|
img = th.randn(*shape, device=device)
|
||
|
|
||
|
indices = list(range(self.num_timesteps))[::-1]
|
||
|
|
||
|
if progress:
|
||
|
from tqdm.auto import tqdm
|
||
|
|
||
|
indices = tqdm(indices)
|
||
|
|
||
|
for i in indices:
|
||
|
_kwargs = model_kwargs
|
||
|
|
||
|
t = th.tensor([i] * len(img), device=device)
|
||
|
with th.no_grad():
|
||
|
out = self.ddim_sample(
|
||
|
model,
|
||
|
img,
|
||
|
t,
|
||
|
clip_denoised=clip_denoised,
|
||
|
denoised_fn=denoised_fn,
|
||
|
cond_fn=cond_fn,
|
||
|
model_kwargs=_kwargs,
|
||
|
eta=eta,
|
||
|
)
|
||
|
out['t'] = t
|
||
|
yield out
|
||
|
img = out["sample"]
|
||
|
|
||
|
def _vb_terms_bpd(self,
|
||
|
model: Model,
|
||
|
x_start,
|
||
|
x_t,
|
||
|
t,
|
||
|
clip_denoised=True,
|
||
|
model_kwargs=None):
|
||
|
"""
|
||
|
Get a term for the variational lower-bound.
|
||
|
|
||
|
The resulting units are bits (rather than nats, as one might expect).
|
||
|
This allows for comparison to other papers.
|
||
|
|
||
|
:return: a dict with the following keys:
|
||
|
- 'output': a shape [N] tensor of NLLs or KLs.
|
||
|
- 'pred_xstart': the x_0 predictions.
|
||
|
"""
|
||
|
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
|
||
|
x_start=x_start, x_t=x_t, t=t)
|
||
|
out = self.p_mean_variance(model,
|
||
|
x_t,
|
||
|
t,
|
||
|
clip_denoised=clip_denoised,
|
||
|
model_kwargs=model_kwargs)
|
||
|
kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"],
|
||
|
out["log_variance"])
|
||
|
kl = mean_flat(kl) / np.log(2.0)
|
||
|
|
||
|
decoder_nll = -discretized_gaussian_log_likelihood(
|
||
|
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"])
|
||
|
assert decoder_nll.shape == x_start.shape
|
||
|
decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
|
||
|
|
||
|
output = th.where((t == 0), decoder_nll, kl)
|
||
|
return {
|
||
|
"output": output,
|
||
|
"pred_xstart": out["pred_xstart"],
|
||
|
'model_forward': out['model_forward'],
|
||
|
}
|
||
|
|
||
|
def _prior_bpd(self, x_start):
|
||
|
"""
|
||
|
Get the prior KL term for the variational lower-bound, measured in
|
||
|
bits-per-dim.
|
||
|
|
||
|
This term can't be optimized, as it only depends on the encoder.
|
||
|
|
||
|
:param x_start: the [N x C x ...] tensor of inputs.
|
||
|
:return: a batch of [N] KL values (in bits), one per batch element.
|
||
|
"""
|
||
|
batch_size = x_start.shape[0]
|
||
|
t = th.tensor([self.num_timesteps - 1] * batch_size,
|
||
|
device=x_start.device)
|
||
|
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
||
|
kl_prior = normal_kl(mean1=qt_mean,
|
||
|
logvar1=qt_log_variance,
|
||
|
mean2=0.0,
|
||
|
logvar2=0.0)
|
||
|
return mean_flat(kl_prior) / np.log(2.0)
|
||
|
|
||
|
def calc_bpd_loop(self,
|
||
|
model: Model,
|
||
|
x_start,
|
||
|
clip_denoised=True,
|
||
|
model_kwargs=None):
|
||
|
"""
|
||
|
Compute the entire variational lower-bound, measured in bits-per-dim,
|
||
|
as well as other related quantities.
|
||
|
|
||
|
:param model: the model to evaluate loss on.
|
||
|
:param x_start: the [N x C x ...] tensor of inputs.
|
||
|
:param clip_denoised: if True, clip denoised samples.
|
||
|
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
||
|
pass to the model. This can be used for conditioning.
|
||
|
|
||
|
:return: a dict containing the following keys:
|
||
|
- total_bpd: the total variational lower-bound, per batch element.
|
||
|
- prior_bpd: the prior term in the lower-bound.
|
||
|
- vb: an [N x T] tensor of terms in the lower-bound.
|
||
|
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
|
||
|
- mse: an [N x T] tensor of epsilon MSEs for each timestep.
|
||
|
"""
|
||
|
device = x_start.device
|
||
|
batch_size = x_start.shape[0]
|
||
|
|
||
|
vb = []
|
||
|
xstart_mse = []
|
||
|
mse = []
|
||
|
for t in list(range(self.num_timesteps))[::-1]:
|
||
|
t_batch = th.tensor([t] * batch_size, device=device)
|
||
|
noise = th.randn_like(x_start)
|
||
|
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
|
||
|
with th.no_grad():
|
||
|
out = self._vb_terms_bpd(
|
||
|
model,
|
||
|
x_start=x_start,
|
||
|
x_t=x_t,
|
||
|
t=t_batch,
|
||
|
clip_denoised=clip_denoised,
|
||
|
model_kwargs=model_kwargs,
|
||
|
)
|
||
|
vb.append(out["output"])
|
||
|
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start)**2))
|
||
|
eps = self._predict_eps_from_xstart(x_t, t_batch,
|
||
|
out["pred_xstart"])
|
||
|
mse.append(mean_flat((eps - noise)**2))
|
||
|
|
||
|
vb = th.stack(vb, dim=1)
|
||
|
xstart_mse = th.stack(xstart_mse, dim=1)
|
||
|
mse = th.stack(mse, dim=1)
|
||
|
|
||
|
prior_bpd = self._prior_bpd(x_start)
|
||
|
total_bpd = vb.sum(dim=1) + prior_bpd
|
||
|
return {
|
||
|
"total_bpd": total_bpd,
|
||
|
"prior_bpd": prior_bpd,
|
||
|
"vb": vb,
|
||
|
"xstart_mse": xstart_mse,
|
||
|
"mse": mse,
|
||
|
}
|
||
|
|
||
|
|
||
|
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
||
|
"""
|
||
|
Extract values from a 1-D numpy array for a batch of indices.
|
||
|
|
||
|
:param arr: the 1-D numpy array.
|
||
|
:param timesteps: a tensor of indices into the array to extract.
|
||
|
:param broadcast_shape: a larger shape of K dimensions with the batch
|
||
|
dimension equal to the length of timesteps.
|
||
|
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
||
|
"""
|
||
|
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
||
|
while len(res.shape) < len(broadcast_shape):
|
||
|
res = res[..., None]
|
||
|
return res.expand(broadcast_shape)
|
||
|
|
||
|
|
||
|
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
||
|
"""
|
||
|
Get a pre-defined beta schedule for the given name.
|
||
|
|
||
|
The beta schedule library consists of beta schedules which remain similar
|
||
|
in the limit of num_diffusion_timesteps.
|
||
|
Beta schedules may be added, but should not be removed or changed once
|
||
|
they are committed to maintain backwards compatibility.
|
||
|
"""
|
||
|
if schedule_name == "linear":
|
||
|
scale = 1000 / num_diffusion_timesteps
|
||
|
beta_start = scale * 0.0001
|
||
|
beta_end = scale * 0.02
|
||
|
return np.linspace(beta_start,
|
||
|
beta_end,
|
||
|
num_diffusion_timesteps,
|
||
|
dtype=np.float64)
|
||
|
elif schedule_name == "cosine":
|
||
|
return betas_for_alpha_bar(
|
||
|
num_diffusion_timesteps,
|
||
|
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2)**2,
|
||
|
)
|
||
|
elif schedule_name == "const0.01":
|
||
|
scale = 1000 / num_diffusion_timesteps
|
||
|
return np.array([scale * 0.01] * num_diffusion_timesteps,
|
||
|
dtype=np.float64)
|
||
|
elif schedule_name == "const0.015":
|
||
|
scale = 1000 / num_diffusion_timesteps
|
||
|
return np.array([scale * 0.015] * num_diffusion_timesteps,
|
||
|
dtype=np.float64)
|
||
|
elif schedule_name == "const0.008":
|
||
|
scale = 1000 / num_diffusion_timesteps
|
||
|
return np.array([scale * 0.008] * num_diffusion_timesteps,
|
||
|
dtype=np.float64)
|
||
|
elif schedule_name == "const0.0065":
|
||
|
scale = 1000 / num_diffusion_timesteps
|
||
|
return np.array([scale * 0.0065] * num_diffusion_timesteps,
|
||
|
dtype=np.float64)
|
||
|
elif schedule_name == "const0.0055":
|
||
|
scale = 1000 / num_diffusion_timesteps
|
||
|
return np.array([scale * 0.0055] * num_diffusion_timesteps,
|
||
|
dtype=np.float64)
|
||
|
elif schedule_name == "const0.0045":
|
||
|
scale = 1000 / num_diffusion_timesteps
|
||
|
return np.array([scale * 0.0045] * num_diffusion_timesteps,
|
||
|
dtype=np.float64)
|
||
|
elif schedule_name == "const0.0035":
|
||
|
scale = 1000 / num_diffusion_timesteps
|
||
|
return np.array([scale * 0.0035] * num_diffusion_timesteps,
|
||
|
dtype=np.float64)
|
||
|
elif schedule_name == "const0.0025":
|
||
|
scale = 1000 / num_diffusion_timesteps
|
||
|
return np.array([scale * 0.0025] * num_diffusion_timesteps,
|
||
|
dtype=np.float64)
|
||
|
elif schedule_name == "const0.0015":
|
||
|
scale = 1000 / num_diffusion_timesteps
|
||
|
return np.array([scale * 0.0015] * num_diffusion_timesteps,
|
||
|
dtype=np.float64)
|
||
|
else:
|
||
|
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
||
|
|
||
|
|
||
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
||
|
"""
|
||
|
Create a beta schedule that discretizes the given alpha_t_bar function,
|
||
|
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
||
|
|
||
|
:param num_diffusion_timesteps: the number of betas to produce.
|
||
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
||
|
produces the cumulative product of (1-beta) up to that
|
||
|
part of the diffusion process.
|
||
|
:param max_beta: the maximum beta to use; use values lower than 1 to
|
||
|
prevent singularities.
|
||
|
"""
|
||
|
betas = []
|
||
|
for i in range(num_diffusion_timesteps):
|
||
|
t1 = i / num_diffusion_timesteps
|
||
|
t2 = (i + 1) / num_diffusion_timesteps
|
||
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
||
|
return np.array(betas)
|
||
|
|
||
|
|
||
|
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||
|
"""
|
||
|
Compute the KL divergence between two gaussians.
|
||
|
|
||
|
Shapes are automatically broadcasted, so batches can be compared to
|
||
|
scalars, among other use cases.
|
||
|
"""
|
||
|
tensor = None
|
||
|
for obj in (mean1, logvar1, mean2, logvar2):
|
||
|
if isinstance(obj, th.Tensor):
|
||
|
tensor = obj
|
||
|
break
|
||
|
assert tensor is not None, "at least one argument must be a Tensor"
|
||
|
|
||
|
logvar1, logvar2 = [
|
||
|
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
|
||
|
for x in (logvar1, logvar2)
|
||
|
]
|
||
|
|
||
|
return 0.5 * (-1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) +
|
||
|
((mean1 - mean2)**2) * th.exp(-logvar2))
|
||
|
|
||
|
|
||
|
def approx_standard_normal_cdf(x):
|
||
|
"""
|
||
|
A fast approximation of the cumulative distribution function of the
|
||
|
standard normal.
|
||
|
"""
|
||
|
return 0.5 * (
|
||
|
1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
|
||
|
|
||
|
|
||
|
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
||
|
"""
|
||
|
Compute the log-likelihood of a Gaussian distribution discretizing to a
|
||
|
given image.
|
||
|
|
||
|
:param x: the target images. It is assumed that this was uint8 values,
|
||
|
rescaled to the range [-1, 1].
|
||
|
:param means: the Gaussian mean Tensor.
|
||
|
:param log_scales: the Gaussian log stddev Tensor.
|
||
|
:return: a tensor like x of log probabilities (in nats).
|
||
|
"""
|
||
|
assert x.shape == means.shape == log_scales.shape
|
||
|
centered_x = x - means
|
||
|
inv_stdv = th.exp(-log_scales)
|
||
|
plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
|
||
|
cdf_plus = approx_standard_normal_cdf(plus_in)
|
||
|
min_in = inv_stdv * (centered_x - 1.0 / 255.0)
|
||
|
cdf_min = approx_standard_normal_cdf(min_in)
|
||
|
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
|
||
|
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
|
||
|
cdf_delta = cdf_plus - cdf_min
|
||
|
log_probs = th.where(
|
||
|
x < -0.999,
|
||
|
log_cdf_plus,
|
||
|
th.where(x > 0.999, log_one_minus_cdf_min,
|
||
|
th.log(cdf_delta.clamp(min=1e-12))),
|
||
|
)
|
||
|
assert log_probs.shape == x.shape
|
||
|
return log_probs
|
||
|
|
||
|
class DummyModel(th.nn.Module):
|
||
|
def __init__(self, pred):
|
||
|
super().__init__()
|
||
|
self.pred = pred
|
||
|
|
||
|
def forward(self, *args, **kwargs):
|
||
|
return DummyReturn(pred=self.pred)
|
||
|
|
||
|
class DummyReturn(NamedTuple):
|
||
|
pred: th.Tensor
|