from abc import ABC, abstractmethod import numpy as np import torch as th def create_named_schedule_sampler(name, diffusion): """ Create a ScheduleSampler from a library of pre-defined samplers. :param name: the name of the sampler. :param diffusion: the diffusion object to sample for. """ if name == "uniform": return UniformSampler(diffusion) else: raise NotImplementedError(f"unknown schedule sampler: {name}") class ScheduleSampler(ABC): """ A distribution over timesteps in the diffusion process, intended to reduce variance of the objective. By default, samplers perform unbiased importance sampling, in which the objective's mean is unchanged. However, subclasses may override sample() to change how the resampled terms are reweighted, allowing for actual changes in the objective. """ @abstractmethod def weights(self): """ Get a numpy array of weights, one per diffusion step. The weights needn't be normalized, but must be positive. """ def sample(self, batch_size, device): """ Importance-sample timesteps for a batch. :param batch_size: the number of timesteps. :param device: the torch device to save to. :return: a tuple (timesteps, weights): - timesteps: a tensor of timestep indices. - weights: a tensor of weights to scale the resulting losses. """ w = self.weights() p = w / np.sum(w) indices_np = np.random.choice(len(p), size=(batch_size, ), p=p) indices = th.from_numpy(indices_np).long().to(device) weights_np = 1 / (len(p) * p[indices_np]) weights = th.from_numpy(weights_np).float().to(device) return indices, weights class UniformSampler(ScheduleSampler): def __init__(self, num_timesteps): self._weights = np.ones([num_timesteps]) def weights(self): return self._weights