import math from dataclasses import dataclass from enum import Enum from typing import NamedTuple, Tuple import torch from choices import * from config_base import BaseConfig from torch import nn from torch.nn import init from .blocks import * from .nn import timestep_embedding from .unet import * class LatentNetType(Enum): none = 'none' skip = 'skip' class LatentNetReturn(NamedTuple): pred: torch.Tensor = None @dataclass class MLPSkipNetConfig(BaseConfig): """ default MLP for the latent DPM in the paper! """ num_channels: int skip_layers: Tuple[int] num_hid_channels: int num_layers: int num_time_emb_channels: int = 64 activation: Activation = Activation.silu use_norm: bool = True condition_bias: float = 1 dropout: float = 0 last_act: Activation = Activation.none num_time_layers: int = 2 time_last_act: bool = False def make_model(self): return MLPSkipNet(self) class MLPSkipNet(nn.Module): """ concat x to hidden layers default MLP for the latent DPM in the paper! """ def __init__(self, conf: MLPSkipNetConfig): super().__init__() self.conf = conf layers = [] for i in range(conf.num_time_layers): if i == 0: a = conf.num_time_emb_channels b = conf.num_channels else: a = conf.num_channels b = conf.num_channels layers.append(nn.Linear(a, b)) if i < conf.num_time_layers - 1 or conf.time_last_act: layers.append(conf.activation.get_act()) self.time_embed = nn.Sequential(*layers) self.layers = nn.ModuleList([]) for i in range(conf.num_layers): if i == 0: act = conf.activation norm = conf.use_norm cond = True a, b = conf.num_channels, conf.num_hid_channels dropout = conf.dropout elif i == conf.num_layers - 1: act = Activation.none norm = False cond = False a, b = conf.num_hid_channels, conf.num_channels dropout = 0 else: act = conf.activation norm = conf.use_norm cond = True a, b = conf.num_hid_channels, conf.num_hid_channels dropout = conf.dropout if i in conf.skip_layers: a += conf.num_channels self.layers.append( MLPLNAct( a, b, norm=norm, activation=act, cond_channels=conf.num_channels, use_cond=cond, condition_bias=conf.condition_bias, dropout=dropout, )) self.last_act = conf.last_act.get_act() def forward(self, x, t, **kwargs): t = timestep_embedding(t, self.conf.num_time_emb_channels) cond = self.time_embed(t) h = x for i in range(len(self.layers)): if i in self.conf.skip_layers: h = torch.cat([h, x], dim=1) h = self.layers[i].forward(x=h, cond=cond) h = self.last_act(h) return LatentNetReturn(h) class MLPLNAct(nn.Module): def __init__( self, in_channels: int, out_channels: int, norm: bool, use_cond: bool, activation: Activation, cond_channels: int, condition_bias: float = 0, dropout: float = 0, ): super().__init__() self.activation = activation self.condition_bias = condition_bias self.use_cond = use_cond self.linear = nn.Linear(in_channels, out_channels) self.act = activation.get_act() if self.use_cond: self.linear_emb = nn.Linear(cond_channels, out_channels) self.cond_layers = nn.Sequential(self.act, self.linear_emb) if norm: self.norm = nn.LayerNorm(out_channels) else: self.norm = nn.Identity() if dropout > 0: self.dropout = nn.Dropout(p=dropout) else: self.dropout = nn.Identity() self.init_weights() def init_weights(self): for module in self.modules(): if isinstance(module, nn.Linear): if self.activation == Activation.relu: init.kaiming_normal_(module.weight, a=0, nonlinearity='relu') elif self.activation == Activation.lrelu: init.kaiming_normal_(module.weight, a=0.2, nonlinearity='leaky_relu') elif self.activation == Activation.silu: init.kaiming_normal_(module.weight, a=0, nonlinearity='relu') else: pass def forward(self, x, cond=None): x = self.linear(x) if self.use_cond: cond = self.cond_layers(cond) cond = (cond, None) x = x * (self.condition_bias + cond[0]) if cond[1] is not None: x = x + cond[1] x = self.norm(x) else: x = self.norm(x) x = self.act(x) x = self.dropout(x) return x