DisMouse: Disentangling Information from Mouse Movement Data

**[Guanhua Zhang][4],   [Zhiming Hu][5],   [Andreas Bulling][6]**
**ACM UIST 2024**, Pittsburgh, USA
**[[Project][2]]** **[[Paper][7]]**
---------------- # Virtual environment setup We recommend to setup a virtual environment using Anaconda.
1. Create a conda environment and install dependencies ```shell conda env create --name dismouse --file=environment.yaml conda activate dismouse ``` 2. Clone our repository to download our code ```shell git clone this_repo.git ``` # Run the code to train DisMouse Our code supports training using GPUs. You can also assign a particular card via CUDA_VISIBLE_DEVICES (e.g., the following commands use GPU card no.3). Simply execute ```shell CUDA_VISIBLE_DEVICES=3 python main.py ``` ## Use your own configurations Change parameters in ```templates.py -> mouse_autoenc``` and ```config.py -> TrainConfig``` ## Train on your mouse dataset Plug in your data loader function in ```dataset.py -> loadDataset``` (line 6) # Citation If you find our code useful or use it in your own projects, please cite our paper: ``` @inproceedings{zhang24_uist, title = {DisMouse: Disentangling Information from Mouse Movement Data}, author = {Zhang, Guanhua and Hu, Zhiming and Bulling, Andreas}, year = {2024}, pages = {1--13}, booktitle = {Proc. ACM Symposium on User Interface Software and Technology (UIST)}, doi = {10.1145/3654777.3676411} } ``` # Acknowledgements Our work is built on the codebase of [Diffusion Autoencoders][1]. Thanks to the authors for sharing their code. [1]: https://diff-ae.github.io/ [2]: https://perceptualui.org/publications/zhang24_uist/ [4]: https://scholar.google.com/citations?user=NqkK0GwAAAAJ&hl=en [5]: https://scholar.google.com/citations?hl=en&user=OLB_xBEAAAAJ [6]: https://www.perceptualui.org/people/bulling/ [7]: https://perceptualui.org/publications/zhang24_uist.pdf