495 lines
15 KiB
Python
495 lines
15 KiB
Python
import math
|
|
from abc import abstractmethod
|
|
from dataclasses import dataclass
|
|
from numbers import Number
|
|
|
|
import torch as th
|
|
import torch.nn.functional as F
|
|
from choices import *
|
|
from config_base import BaseConfig
|
|
from torch import nn
|
|
|
|
from .nn import (avg_pool_nd, conv_nd, linear, normalization,
|
|
timestep_embedding, torch_checkpoint, zero_module)
|
|
|
|
|
|
class ScaleAt(Enum):
|
|
after_norm = 'afternorm'
|
|
|
|
|
|
class TimestepBlock(nn.Module):
|
|
"""
|
|
Any module where forward() takes timestep embeddings as a second argument.
|
|
"""
|
|
@abstractmethod
|
|
def forward(self, x, emb=None, cond=None, lateral=None):
|
|
"""
|
|
Apply the module to `x` given `emb` timestep embeddings.
|
|
"""
|
|
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
|
"""
|
|
A sequential module that passes timestep embeddings to the children that
|
|
support it as an extra input.
|
|
"""
|
|
def forward(self, x, emb=None, cond=None, lateral=None):
|
|
for layer in self:
|
|
if isinstance(layer, TimestepBlock):
|
|
x = layer(x, emb=emb, cond=cond, lateral=lateral)
|
|
else:
|
|
x = layer(x)
|
|
return x
|
|
|
|
|
|
@dataclass
|
|
class ResBlockConfig(BaseConfig):
|
|
channels: int
|
|
emb_channels: int
|
|
dropout: float
|
|
out_channels: int = None
|
|
use_condition: bool = True
|
|
use_conv: bool = False
|
|
dims: int = 2
|
|
use_checkpoint: bool = False
|
|
up: bool = False
|
|
down: bool = False
|
|
two_cond: bool = False
|
|
cond_emb_channels: int = None
|
|
has_lateral: bool = False
|
|
lateral_channels: int = None
|
|
use_zero_module: bool = True
|
|
|
|
def __post_init__(self):
|
|
self.out_channels = self.out_channels or self.channels
|
|
self.cond_emb_channels = self.cond_emb_channels or self.emb_channels
|
|
|
|
def make_model(self):
|
|
return ResBlock(self)
|
|
|
|
|
|
class ResBlock(TimestepBlock):
|
|
"""
|
|
A residual block that can optionally change the number of channels.
|
|
"""
|
|
def __init__(self, conf: ResBlockConfig):
|
|
super().__init__()
|
|
self.conf = conf
|
|
|
|
assert conf.lateral_channels is None
|
|
layers = [
|
|
normalization(conf.channels),
|
|
nn.SiLU(),
|
|
conv_nd(conf.dims, conf.channels, conf.out_channels, 3, padding=1)
|
|
]
|
|
self.in_layers = nn.Sequential(*layers)
|
|
|
|
self.updown = conf.up or conf.down
|
|
|
|
if conf.up:
|
|
self.h_upd = Upsample(conf.channels, False, conf.dims)
|
|
self.x_upd = Upsample(conf.channels, False, conf.dims)
|
|
elif conf.down:
|
|
self.h_upd = Downsample(conf.channels, False, conf.dims)
|
|
self.x_upd = Downsample(conf.channels, False, conf.dims)
|
|
else:
|
|
self.h_upd = self.x_upd = nn.Identity()
|
|
|
|
if conf.use_condition:
|
|
self.emb_layers = nn.Sequential(
|
|
nn.SiLU(),
|
|
linear(conf.emb_channels, 2 * conf.out_channels),
|
|
)
|
|
|
|
if conf.two_cond:
|
|
self.cond_emb_layers = nn.Sequential(
|
|
nn.SiLU(),
|
|
linear(conf.cond_emb_channels, conf.out_channels),
|
|
)
|
|
conv = conv_nd(conf.dims,
|
|
conf.out_channels,
|
|
conf.out_channels,
|
|
3,
|
|
padding=1)
|
|
if conf.use_zero_module:
|
|
conv = zero_module(conv)
|
|
|
|
layers = []
|
|
layers += [
|
|
normalization(conf.out_channels),
|
|
nn.SiLU(),
|
|
nn.Dropout(p=conf.dropout),
|
|
conv,
|
|
]
|
|
self.out_layers = nn.Sequential(*layers)
|
|
|
|
if conf.out_channels == conf.channels:
|
|
self.skip_connection = nn.Identity()
|
|
else:
|
|
if conf.use_conv:
|
|
kernel_size = 3
|
|
padding = 1
|
|
else:
|
|
kernel_size = 1
|
|
padding = 0
|
|
|
|
self.skip_connection = conv_nd(conf.dims,
|
|
conf.channels,
|
|
conf.out_channels,
|
|
kernel_size,
|
|
padding=padding)
|
|
|
|
def forward(self, x, emb=None, cond=None, lateral=None):
|
|
"""
|
|
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
|
|
Args:
|
|
x: input
|
|
lateral: lateral connection from the encoder
|
|
"""
|
|
return torch_checkpoint(self._forward, (x, emb, cond, lateral),
|
|
self.conf.use_checkpoint)
|
|
|
|
def _forward(
|
|
self,
|
|
x,
|
|
emb=None,
|
|
cond=None,
|
|
lateral=None,
|
|
):
|
|
"""
|
|
Args:
|
|
lateral: required if "has_lateral" and non-gated, with gated, it can be supplied optionally
|
|
"""
|
|
if self.conf.has_lateral:
|
|
assert lateral is not None
|
|
x = th.cat([x, lateral], dim=1)
|
|
|
|
if self.updown:
|
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
|
h = in_rest(x)
|
|
h = self.h_upd(h)
|
|
x = self.x_upd(x)
|
|
h = in_conv(h)
|
|
else:
|
|
h = self.in_layers(x)
|
|
|
|
if self.conf.use_condition:
|
|
if emb is not None:
|
|
emb_out = self.emb_layers(emb).type(h.dtype)
|
|
else:
|
|
emb_out = None
|
|
|
|
if self.conf.two_cond:
|
|
if cond is None:
|
|
cond_out = None
|
|
else:
|
|
if not isinstance(cond, th.Tensor):
|
|
assert isinstance(cond, dict)
|
|
cond = cond['cond']
|
|
cond_out = self.cond_emb_layers(cond).type(h.dtype)
|
|
|
|
if cond_out is not None:
|
|
while len(cond_out.shape) < len(h.shape):
|
|
cond_out = cond_out[..., None]
|
|
else:
|
|
cond_out = None
|
|
|
|
h = apply_conditions(
|
|
h=h,
|
|
emb=emb_out,
|
|
cond=cond_out,
|
|
layers=self.out_layers,
|
|
scale_bias=1,
|
|
in_channels=self.conf.out_channels,
|
|
up_down_layer=None,
|
|
)
|
|
return self.skip_connection(x) + h
|
|
|
|
|
|
def apply_conditions(
|
|
h,
|
|
emb=None,
|
|
cond=None,
|
|
layers: nn.Sequential = None,
|
|
scale_bias: float = 1,
|
|
in_channels: int = 512,
|
|
up_down_layer: nn.Module = None,
|
|
):
|
|
"""
|
|
apply conditions on the feature maps
|
|
|
|
Args:
|
|
emb: time conditional (ready to scale + shift)
|
|
cond: encoder's conditional (read to scale + shift)
|
|
"""
|
|
two_cond = emb is not None and cond is not None
|
|
|
|
if emb is not None:
|
|
while len(emb.shape) < len(h.shape):
|
|
emb = emb[..., None]
|
|
|
|
if two_cond:
|
|
while len(cond.shape) < len(h.shape):
|
|
cond = cond[..., None]
|
|
scale_shifts = [emb, cond]
|
|
else:
|
|
scale_shifts = [emb]
|
|
|
|
for i, each in enumerate(scale_shifts):
|
|
if each is None:
|
|
a = None
|
|
b = None
|
|
else:
|
|
if each.shape[1] == in_channels * 2:
|
|
a, b = th.chunk(each, 2, dim=1)
|
|
else:
|
|
a = each
|
|
b = None
|
|
scale_shifts[i] = (a, b)
|
|
|
|
if isinstance(scale_bias, Number):
|
|
biases = [scale_bias] * len(scale_shifts)
|
|
else:
|
|
biases = scale_bias
|
|
|
|
pre_layers, post_layers = layers[0], layers[1:]
|
|
|
|
mid_layers, post_layers = post_layers[:-2], post_layers[-2:]
|
|
|
|
h = pre_layers(h)
|
|
for i, (scale, shift) in enumerate(scale_shifts):
|
|
if scale is not None:
|
|
h = h * (biases[i] + scale)
|
|
if shift is not None:
|
|
h = h + shift
|
|
h = mid_layers(h)
|
|
|
|
if up_down_layer is not None:
|
|
h = up_down_layer(h)
|
|
h = post_layers(h)
|
|
return h
|
|
|
|
class Upsample(nn.Module):
|
|
"""
|
|
An upsampling layer with an optional convolution.
|
|
|
|
:param channels: channels in the inputs and outputs.
|
|
:param use_conv: a bool determining if a convolution is applied.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
|
upsampling occurs in the inner-two dimensions.
|
|
"""
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.dims = dims
|
|
if use_conv:
|
|
self.conv = conv_nd(dims,
|
|
self.channels,
|
|
self.out_channels,
|
|
3,
|
|
padding=1)
|
|
|
|
def forward(self, x):
|
|
assert x.shape[1] == self.channels
|
|
if self.dims == 3:
|
|
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2),
|
|
mode="nearest")
|
|
else:
|
|
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
|
if self.use_conv:
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
"""
|
|
A downsampling layer with an optional convolution.
|
|
|
|
:param channels: channels in the inputs and outputs.
|
|
:param use_conv: a bool determining if a convolution is applied.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
|
downsampling occurs in the inner-two dimensions.
|
|
"""
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.dims = dims
|
|
stride = 2 if dims != 3 else (1, 2, 2)
|
|
if use_conv:
|
|
self.op = conv_nd(dims,
|
|
self.channels,
|
|
self.out_channels,
|
|
3,
|
|
stride=stride,
|
|
padding=1)
|
|
else:
|
|
assert self.channels == self.out_channels
|
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
|
|
|
def forward(self, x):
|
|
assert x.shape[1] == self.channels
|
|
return self.op(x)
|
|
|
|
|
|
class AttentionBlock(nn.Module):
|
|
"""
|
|
An attention block that allows spatial positions to attend to each other.
|
|
|
|
Originally ported from here, but adapted to the N-d case.
|
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
num_heads=1,
|
|
num_head_channels=-1,
|
|
use_checkpoint=False,
|
|
use_new_attention_order=False,
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
if num_head_channels == -1:
|
|
self.num_heads = num_heads
|
|
else:
|
|
assert (
|
|
channels % num_head_channels == 0
|
|
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
|
self.num_heads = channels // num_head_channels
|
|
self.use_checkpoint = use_checkpoint
|
|
self.norm = normalization(channels)
|
|
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
|
if use_new_attention_order:
|
|
self.attention = QKVAttention(self.num_heads)
|
|
else:
|
|
self.attention = QKVAttentionLegacy(self.num_heads)
|
|
|
|
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
|
|
|
def forward(self, x):
|
|
return torch_checkpoint(self._forward, (x, ), self.use_checkpoint)
|
|
|
|
def _forward(self, x):
|
|
b, c, *spatial = x.shape
|
|
x = x.reshape(b, c, -1)
|
|
qkv = self.qkv(self.norm(x))
|
|
h = self.attention(qkv)
|
|
h = self.proj_out(h)
|
|
return (x + h).reshape(b, c, *spatial)
|
|
|
|
|
|
def count_flops_attn(model, _x, y):
|
|
"""
|
|
A counter for the `thop` package to count the operations in an
|
|
attention operation.
|
|
Meant to be used like:
|
|
macs, params = thop.profile(
|
|
model,
|
|
inputs=(inputs, timestamps),
|
|
custom_ops={QKVAttention: QKVAttention.count_flops},
|
|
)
|
|
"""
|
|
b, c, *spatial = y[0].shape
|
|
num_spatial = int(np.prod(spatial))
|
|
matmul_ops = 2 * b * (num_spatial**2) * c
|
|
model.total_ops += th.DoubleTensor([matmul_ops])
|
|
|
|
class QKVAttentionLegacy(nn.Module):
|
|
"""
|
|
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
|
"""
|
|
def __init__(self, n_heads):
|
|
super().__init__()
|
|
self.n_heads = n_heads
|
|
|
|
def forward(self, qkv):
|
|
"""
|
|
Apply QKV attention.
|
|
|
|
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
|
:return: an [N x (H * C) x T] tensor after attention.
|
|
"""
|
|
bs, width, length = qkv.shape
|
|
assert width % (3 * self.n_heads) == 0
|
|
ch = width // (3 * self.n_heads)
|
|
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch,
|
|
dim=1)
|
|
scale = 1 / math.sqrt(math.sqrt(ch))
|
|
weight = th.einsum(
|
|
"bct,bcs->bts", q * scale,
|
|
k * scale)
|
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
|
a = th.einsum("bts,bcs->bct", weight, v)
|
|
return a.reshape(bs, -1, length)
|
|
|
|
@staticmethod
|
|
def count_flops(model, _x, y):
|
|
return count_flops_attn(model, _x, y)
|
|
|
|
class QKVAttention(nn.Module):
|
|
"""
|
|
A module which performs QKV attention and splits in a different order.
|
|
"""
|
|
def __init__(self, n_heads):
|
|
super().__init__()
|
|
self.n_heads = n_heads
|
|
|
|
def forward(self, qkv):
|
|
"""
|
|
Apply QKV attention.
|
|
|
|
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
|
:return: an [N x (H * C) x T] tensor after attention.
|
|
"""
|
|
bs, width, length = qkv.shape
|
|
assert width % (3 * self.n_heads) == 0
|
|
ch = width // (3 * self.n_heads)
|
|
q, k, v = qkv.chunk(3, dim=1)
|
|
scale = 1 / math.sqrt(math.sqrt(ch))
|
|
weight = th.einsum(
|
|
"bct,bcs->bts",
|
|
(q * scale).view(bs * self.n_heads, ch, length),
|
|
(k * scale).view(bs * self.n_heads, ch, length),
|
|
)
|
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
|
a = th.einsum("bts,bcs->bct", weight,
|
|
v.reshape(bs * self.n_heads, ch, length))
|
|
return a.reshape(bs, -1, length)
|
|
|
|
@staticmethod
|
|
def count_flops(model, _x, y):
|
|
return count_flops_attn(model, _x, y)
|
|
|
|
|
|
class AttentionPool2d(nn.Module):
|
|
"""
|
|
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
|
"""
|
|
def __init__(
|
|
self,
|
|
spacial_dim: int,
|
|
embed_dim: int,
|
|
num_heads_channels: int,
|
|
output_dim: int = None,
|
|
):
|
|
super().__init__()
|
|
self.positional_embedding = nn.Parameter(
|
|
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5)
|
|
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
|
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
|
self.num_heads = embed_dim // num_heads_channels
|
|
self.attention = QKVAttention(self.num_heads)
|
|
|
|
def forward(self, x):
|
|
b, c, *_spatial = x.shape
|
|
x = x.reshape(b, c, -1)
|
|
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)
|
|
x = x + self.positional_embedding[None, :, :].to(x.dtype)
|
|
x = self.qkv_proj(x)
|
|
x = self.attention(x)
|
|
x = self.c_proj(x)
|
|
return x[:, :, 0]
|