from torch.utils.data import Dataset import numpy as np import os class hot3d_aria_dataset(Dataset): def __init__(self, data_dir, subjects, seq_len, actions = 'all', object_num=1, sample_rate=1): if actions == 'all': actions = ['room', 'kitchen', 'office'] self.sample_rate = sample_rate self.dataset = self.load_data(data_dir, subjects, seq_len, actions, object_num) def load_data(self, data_dir, subjects, seq_len, actions, object_num): dataset = [] file_names = sorted(os.listdir(data_dir)) gaze_file_names = [] hand_file_names = [] hand_joint_file_names = [] head_file_names = [] object_left_file_names = [] object_right_file_names = [] for name in file_names: name_split = name.split('_') subject = name_split[0] action = name_split[2] if subject in subjects and action in actions: data_type = name_split[-1][:-4] if(data_type == 'gaze'): gaze_file_names.append(name) if(data_type == 'hand'): hand_file_names.append(name) if(data_type == 'handjoints'): hand_joint_file_names.append(name) if(data_type == 'head'): head_file_names.append(name) if(data_type == 'bbxleft'): object_left_file_names.append(name) if(data_type == 'bbxright'): object_right_file_names.append(name) segments_number = len(hand_file_names) # print("segments number {}".format(segments_number)) for i in range(segments_number): gaze_data_path = data_dir + gaze_file_names[i] gaze_data = np.load(gaze_data_path) num_frames = gaze_data.shape[0] if num_frames < seq_len: continue hand_data_path = data_dir + hand_file_names[i] hand_data = np.load(hand_data_path) hand_joint_data_path = data_dir + hand_joint_file_names[i] hand_joint_data_all = np.load(hand_joint_data_path) hand_joint_data = hand_joint_data_all[:, :120] attended_hand_gt = hand_joint_data_all[:, 120:121] attended_hand_baseline = hand_joint_data_all[:, 121:122] head_data_path = data_dir + head_file_names[i] head_data = np.load(head_data_path) object_left_data_path = data_dir + object_left_file_names[i] object_left_data = np.load(object_left_data_path) object_right_data_path = data_dir + object_right_file_names[i] object_right_data = np.load(object_right_data_path) left_hand_translation = hand_data[:, 0:3] right_hand_translation = hand_data[:, 22:25] head_direction = head_data[:, 0:3] head_translation = head_data[:, 3:6] gaze_direction = gaze_data[:, 0:3] object_left_bbx = [] object_right_bbx = [] for item in range(object_num): left_bbx = object_left_data[:, item*24:item*24+24] right_bbx = object_right_data[:, item*24:item*24+24] if len(object_left_bbx) == 0: object_left_bbx = left_bbx object_right_bbx = right_bbx else: object_left_bbx = np.concatenate((object_left_bbx, left_bbx), axis=1) object_right_bbx = np.concatenate((object_right_bbx, right_bbx), axis=1) #object_left_positions = np.mean(object_left_bbx.reshape(num_frames, object_num, 8, 3), axis=2).reshape(num_frames, -1) #object_right_positions = np.mean(object_right_bbx.reshape(num_frames, object_num, 8, 3), axis=2).reshape(num_frames, -1) data = gaze_direction data = np.concatenate((data, left_hand_translation), axis=1) data = np.concatenate((data, right_hand_translation), axis=1) data = np.concatenate((data, head_translation), axis=1) data = np.concatenate((data, hand_joint_data), axis=1) data = np.concatenate((data, head_direction), axis=1) if object_num > 0: data = np.concatenate((data, object_left_bbx), axis=1) data = np.concatenate((data, object_right_bbx), axis=1) data = np.concatenate((data, attended_hand_gt), axis=1) data = np.concatenate((data, attended_hand_baseline), axis=1) fs = np.arange(0, num_frames - seq_len + 1) fs_sel = fs for i in np.arange(seq_len - 1): fs_sel = np.vstack((fs_sel, fs + i + 1)) fs_sel = fs_sel.transpose() seq_sel = data[fs_sel, :] seq_sel = seq_sel[0::self.sample_rate, :, :] if len(dataset) == 0: dataset = seq_sel else: dataset = np.concatenate((dataset, seq_sel), axis=0) return dataset def __len__(self): return np.shape(self.dataset)[0] def __getitem__(self, item): return self.dataset[item] if __name__ == "__main__": data_dir = "/scratch/hu/pose_forecast/hot3d_hoigaze/" seq_len = 15 actions = 'all' all_subjects = ['P0001', 'P0002', 'P0003', 'P0009', 'P0010', 'P0011', 'P0012', 'P0014', 'P0015'] train_subjects = ['P0009', 'P0010', 'P0011', 'P0012', 'P0014', 'P0015'] object_num = 1 sample_rate = 10 train_dataset = hot3d_aria_dataset(data_dir, train_subjects, seq_len, actions, object_num, sample_rate) print("Training data size: {}".format(train_dataset.dataset.shape)) hand_joint_dominance = train_dataset[:, :, -2:-1].flatten() print("right hand ratio: {:.2f}".format(np.sum(hand_joint_dominance)/hand_joint_dominance.shape[0]*100)) #test_subjects = ['P0001', 'P0002', 'P0003'] #sample_rate = 8 #test_dataset = hot3d_aria_dataset(data_dir, test_subjects, seq_len, actions, #object_num, sample_rate) # print("Test data size: {}".format(test_dataset.dataset.shape)) #hand_joint_dominance = test_dataset[:, :, -2:-1].flatten() #print("right hand ratio: {:.2f}".format(np.sum(hand_joint_dominance)/hand_joint_dominance.shape[0]*100))