HOIGaze/model/attended_hand_recognition.py
2025-04-30 14:15:00 +02:00

98 lines
No EOL
5.6 KiB
Python

from torch import nn
import torch
from model import graph_convolution_network
import torch.nn.functional as F
class attended_hand_recognition(nn.Module):
def __init__(self, opt):
super().__init__()
self.opt = opt
self.body_joint_number = opt.body_joint_number
self.hand_joint_number = opt.hand_joint_number
self.joint_number = self.body_joint_number + self.hand_joint_number
self.input_n = opt.seq_len
gcn_latent_features = opt.gcn_latent_features
residual_gcns_num = opt.residual_gcns_num
gcn_dropout = opt.gcn_dropout
head_cnn_channels = opt.head_cnn_channels
recognition_cnn_channels = opt.recognition_cnn_channels
# 1D CNN for extracting features from head directions
in_channels_head = 3
cnn_kernel_size = 3
cnn_padding = (cnn_kernel_size -1)//2
out_channels_1_head = head_cnn_channels
out_channels_2_head = head_cnn_channels
out_channels_head = head_cnn_channels
self.head_cnn = nn.Sequential(
nn.Conv1d(in_channels = in_channels_head, out_channels=out_channels_1_head, kernel_size=cnn_kernel_size, padding=cnn_padding, padding_mode='replicate'),
nn.LayerNorm([out_channels_1_head, self.input_n]),
nn.Tanh(),
nn.Conv1d(in_channels=out_channels_1_head, out_channels=out_channels_2_head, kernel_size=cnn_kernel_size, padding = cnn_padding, padding_mode='replicate'),
nn.LayerNorm([out_channels_2_head, self.input_n]),
nn.Tanh(),
nn.Conv1d(in_channels=out_channels_2_head, out_channels=out_channels_head, kernel_size=cnn_kernel_size, padding = cnn_padding, padding_mode='replicate'),
nn.Tanh()
)
# GCN for extracting features from body and left hand joints
self.left_hand_gcn = graph_convolution_network.graph_convolution_network(in_features=3,
latent_features=gcn_latent_features,
node_n=self.joint_number,
seq_len=self.input_n,
p_dropout=gcn_dropout,
residual_gcns_num=residual_gcns_num)
# GCN for extracting features from body and right hand joints
self.right_hand_gcn = graph_convolution_network.graph_convolution_network(in_features=3,
latent_features=gcn_latent_features,
node_n=self.joint_number,
seq_len=self.input_n,
p_dropout=gcn_dropout,
residual_gcns_num=residual_gcns_num)
# 1D CNN for recognising attended hand (left or right)
in_channels_recognition = self.joint_number*gcn_latent_features*2 + out_channels_head
cnn_kernel_size = 3
cnn_padding = (cnn_kernel_size -1)//2
out_channels_1_recognition = recognition_cnn_channels
out_channels_recognition = 2
self.recognition_cnn = nn.Sequential(
nn.Conv1d(in_channels = in_channels_recognition, out_channels=out_channels_1_recognition, kernel_size=cnn_kernel_size, padding=cnn_padding, padding_mode='replicate'),
nn.LayerNorm([out_channels_1_recognition, self.input_n]),
nn.Tanh(),
nn.Conv1d(in_channels=out_channels_1_recognition, out_channels=out_channels_recognition, kernel_size=cnn_kernel_size, padding = cnn_padding, padding_mode='replicate'),
)
def forward(self, src, input_n=15):
bs, seq_len, features = src.shape
body_joints = src.clone()[:, :, :self.body_joint_number*3]
left_hand_joints = src.clone()[:, :, self.body_joint_number*3:(self.body_joint_number+self.hand_joint_number)*3]
right_hand_joints = src.clone()[:, :, (self.body_joint_number+self.hand_joint_number)*3:(self.body_joint_number+self.hand_joint_number*2)*3]
head_direction = src.clone()[:, :, (self.body_joint_number+self.hand_joint_number*2)*3:(self.body_joint_number+self.hand_joint_number*2+1)*3]
left_hand_joints = torch.cat((left_hand_joints, body_joints), dim=2)
left_hand_joints = left_hand_joints.permute(0, 2, 1).reshape(bs, -1, 3, input_n).permute(0, 2, 1, 3)
left_hand_features = self.left_hand_gcn(left_hand_joints)
left_hand_features = left_hand_features.permute(0, 2, 1, 3).reshape(bs, -1, input_n)
right_hand_joints = torch.cat((right_hand_joints, body_joints), dim=2)
right_hand_joints = right_hand_joints.permute(0, 2, 1).reshape(bs, -1, 3, input_n).permute(0, 2, 1, 3)
right_hand_features = self.right_hand_gcn(right_hand_joints)
right_hand_features = right_hand_features.permute(0, 2, 1, 3).reshape(bs, -1, input_n)
head_direction = head_direction.permute(0,2,1)
head_features = self.head_cnn(head_direction)
# fuse head and hand features
features = torch.cat((left_hand_features, right_hand_features), dim=1)
features = torch.cat((features, head_features), dim=1)
# recognise attended hand from fused features
prediction = self.recognition_cnn(features).permute(0, 2, 1)
return prediction