HOIGaze/model/graph_convolution_network.py
2025-04-30 14:15:00 +02:00

79 lines
No EOL
3 KiB
Python

import torch.nn as nn
import torch
from torch.nn.parameter import Parameter
import math
class graph_convolution(nn.Module):
def __init__(self, in_features, out_features, node_n = 21, seq_len = 40, bias=True):
super().__init__()
self.temporal_graph_weights = Parameter(torch.FloatTensor(seq_len, seq_len))
self.feature_weights = Parameter(torch.FloatTensor(in_features, out_features))
self.spatial_graph_weights = Parameter(torch.FloatTensor(node_n, node_n))
if bias:
self.bias = Parameter(torch.FloatTensor(seq_len))
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.spatial_graph_weights.size(1))
self.feature_weights.data.uniform_(-stdv, stdv)
self.temporal_graph_weights.data.uniform_(-stdv, stdv)
self.spatial_graph_weights.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input):
y = torch.matmul(input, self.temporal_graph_weights)
y = torch.matmul(y.permute(0, 3, 2, 1), self.feature_weights)
y = torch.matmul(self.spatial_graph_weights, y).permute(0, 3, 2, 1).contiguous()
if self.bias is not None:
return (y + self.bias)
else:
return y
class residual_graph_convolution(nn.Module):
def __init__(self, features, node_n=21, seq_len = 40, bias=True, p_dropout=0.3):
super().__init__()
self.gcn = graph_convolution(features, features, node_n=node_n, seq_len=seq_len, bias=bias)
self.ln = nn.LayerNorm([features, node_n, seq_len], elementwise_affine=True)
self.act_f = nn.Tanh()
self.dropout = nn.Dropout(p_dropout)
def forward(self, x):
y = self.gcn(x)
y = self.ln(y)
y = self.act_f(y)
y = self.dropout(y)
return y + x
class graph_convolution_network(nn.Module):
def __init__(self, in_features, latent_features, node_n=21, seq_len=40, p_dropout=0.3, residual_gcns_num=1):
super().__init__()
self.residual_gcns_num = residual_gcns_num
self.seq_len = seq_len
self.start_gcn = graph_convolution(in_features=in_features, out_features=latent_features, node_n=node_n, seq_len=seq_len)
self.residual_gcns = []
for i in range(residual_gcns_num):
self.residual_gcns.append(residual_graph_convolution(features=latent_features, node_n=node_n, seq_len=seq_len*2, p_dropout=p_dropout))
self.residual_gcns = nn.ModuleList(self.residual_gcns)
def forward(self, x):
y = self.start_gcn(x)
y = torch.cat((y, y), dim=3)
for i in range(self.residual_gcns_num):
y = self.residual_gcns[i](y)
y = y[:, :, :, :self.seq_len]
return y