HOIGaze/utils/adt_dataset.py
2025-04-30 14:15:00 +02:00

171 lines
No EOL
8.4 KiB
Python

from torch.utils.data import Dataset
import numpy as np
import os
class adt_dataset(Dataset):
def __init__(self, data_dir, seq_len, actions = 'all', train_flag = 1, object_num=1, hand_joint_number=1, sample_rate=1):
actions = self.define_actions(actions)
self.sample_rate = sample_rate
if train_flag == 1:
data_dir = data_dir + 'train/'
if train_flag == 0:
data_dir = data_dir + 'test/'
self.dataset = self.load_data(data_dir, seq_len, actions, object_num, hand_joint_number)
def define_actions(self, action):
"""
Define the list of actions we are using.
Args
action: String with the passed action. Could be "all"
Returns
actions: List of strings of actions
Raises
ValueError if the action is not included.
"""
actions = ['work', 'decoration', 'meal']
if action in actions:
return [action]
if action == "all":
return actions
raise( ValueError, "Unrecognised action: %d" % action )
def load_data(self, data_dir, seq_len, actions, object_num, hand_joint_number):
action_number = len(actions)
dataset = []
file_names = sorted(os.listdir(data_dir))
gaze_file_names = {}
hand_file_names = {}
hand_joint_file_names = {}
head_file_names = {}
object_left_file_names = {}
object_right_file_names = {}
for action_idx in np.arange(action_number):
gaze_file_names[actions[ action_idx ]] = []
hand_file_names[actions[ action_idx ]] = []
hand_joint_file_names[actions[ action_idx ]] = []
head_file_names[actions[ action_idx ]] = []
object_left_file_names[actions[ action_idx ]] = []
object_right_file_names[actions[ action_idx ]] = []
for name in file_names:
name_split = name.split('_')
action = name_split[2]
if action in actions:
data_type = name_split[-1][:-4]
if(data_type == 'gaze'):
gaze_file_names[action].append(name)
if(data_type == 'hand'):
hand_file_names[action].append(name)
if(data_type == 'handjoints'):
hand_joint_file_names[action].append(name)
if(data_type == 'head'):
head_file_names[action].append(name)
if(data_type == 'bbxleft'):
object_left_file_names[action].append(name)
if(data_type == 'bbxright'):
object_right_file_names[action].append(name)
for action_idx in np.arange(action_number):
action = actions[ action_idx ]
segments_number = len(gaze_file_names[action])
print("Reading action {}, segments number {}".format(action, segments_number))
for i in range(segments_number):
gaze_data_path = data_dir + gaze_file_names[action][i]
gaze_data = np.load(gaze_data_path)
gaze_direction = gaze_data[:, :3]
num_frames = gaze_data.shape[0]
if num_frames < seq_len:
continue
hand_data_path = data_dir + hand_file_names[action][i]
hand_translation = np.load(hand_data_path)
hand_joint_data_path = data_dir + hand_joint_file_names[action][i]
hand_joint_data_all = np.load(hand_joint_data_path)
hand_joint_number_default = 15
hand_joint_data = hand_joint_data_all[:, :hand_joint_number_default*6]
left_hand_center = np.mean(hand_joint_data[:, :hand_joint_number_default*3].reshape(hand_joint_data.shape[0], hand_joint_number_default, 3), axis=1)
right_hand_center = np.mean(hand_joint_data[:, hand_joint_number_default*3:].reshape(hand_joint_data.shape[0], hand_joint_number_default, 3), axis=1)
if hand_joint_number == 1:
hand_joint_data = np.concatenate((left_hand_center, right_hand_center), axis=1)
attended_hand_gt = hand_joint_data_all[:, hand_joint_number_default*6:hand_joint_number_default*6+1]
attended_hand_baseline = hand_joint_data_all[:, hand_joint_number_default*6+1:hand_joint_number_default*6+2]
head_data_path = data_dir + head_file_names[action][i]
head_data = np.load(head_data_path)
head_direction = head_data[:, :3]
head_translation = head_data[:, 3:]
object_left_data_path = data_dir + object_left_file_names[action][i]
object_left_data = np.load(object_left_data_path)
object_left_data = object_left_data.reshape(object_left_data.shape[0], -1)
object_right_data_path = data_dir + object_right_file_names[action][i]
object_right_data = np.load(object_right_data_path)
object_right_data = object_right_data.reshape(object_right_data.shape[0], -1)
object_left_bbx = []
object_right_bbx = []
for item in range(object_num):
left_bbx = object_left_data[:, item*24:item*24+24]
right_bbx = object_right_data[:, item*24:item*24+24]
if len(object_left_bbx) == 0:
object_left_bbx = left_bbx
object_right_bbx = right_bbx
else:
object_left_bbx = np.concatenate((object_left_bbx, left_bbx), axis=1)
object_right_bbx = np.concatenate((object_right_bbx, right_bbx), axis=1)
#object_left_positions = np.mean(object_left_bbx.reshape(num_frames, object_num, 8, 3), axis=2).reshape(num_frames, -1)
#object_right_positions = np.mean(object_right_bbx.reshape(num_frames, object_num, 8, 3), axis=2).reshape(num_frames, -1)
data = gaze_direction
data = np.concatenate((data, hand_translation), axis=1)
data = np.concatenate((data, head_translation), axis=1)
data = np.concatenate((data, hand_joint_data), axis=1)
data = np.concatenate((data, head_direction), axis=1)
if object_num > 0:
data = np.concatenate((data, object_left_bbx), axis=1)
data = np.concatenate((data, object_right_bbx), axis=1)
data = np.concatenate((data, attended_hand_gt), axis=1)
data = np.concatenate((data, attended_hand_baseline), axis=1)
fs = np.arange(0, num_frames - seq_len + 1)
fs_sel = fs
for i in np.arange(seq_len - 1):
fs_sel = np.vstack((fs_sel, fs + i + 1))
fs_sel = fs_sel.transpose()
#print(fs_sel)
seq_sel = data[fs_sel, :]
seq_sel = seq_sel[0::self.sample_rate, :, :]
#print(seq_sel.shape)
if len(dataset) == 0:
dataset = seq_sel
else:
dataset = np.concatenate((dataset, seq_sel), axis=0)
return dataset
def __len__(self):
return np.shape(self.dataset)[0]
def __getitem__(self, item):
return self.dataset[item]
if __name__ == "__main__":
data_dir = "/scratch/hu/pose_forecast/adt_hoigaze/"
seq_len = 15
actions = 'all'
sample_rate = 1
train_flag = 1
object_num = 1
hand_joint_number = 1
train_dataset = adt_dataset(data_dir, seq_len, actions, train_flag, object_num, hand_joint_number, sample_rate)
print("Training data size: {}".format(train_dataset.dataset.shape))
hand_joint_dominance = train_dataset[:, :, -2:-1].flatten()
print("right hand ratio: {:.2f}".format(np.sum(hand_joint_dominance)/hand_joint_dominance.shape[0]*100))