update readme
This commit is contained in:
parent
35ee4b75e8
commit
249a01f342
18 changed files with 4936 additions and 0 deletions
579
model/blocks.py
Normal file
579
model/blocks.py
Normal file
|
@ -0,0 +1,579 @@
|
|||
import math, pdb
|
||||
from abc import abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from numbers import Number
|
||||
|
||||
import torch as th
|
||||
import torch.nn.functional as F
|
||||
from choices import *
|
||||
from config_base import BaseConfig
|
||||
from torch import nn
|
||||
import numpy as np
|
||||
from .nn import (avg_pool_nd, conv_nd, linear, normalization,
|
||||
timestep_embedding, zero_module)
|
||||
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
Any module where forward() takes timestep embeddings as a second argument.
|
||||
"""
|
||||
@abstractmethod
|
||||
def forward(self, x, emb=None, cond=None, lateral=None):
|
||||
"""
|
||||
Apply the module to `x` given `emb` timestep embeddings.
|
||||
"""
|
||||
|
||||
|
||||
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
"""
|
||||
A sequential module that passes timestep embeddings to the children that
|
||||
support it as an extra input.
|
||||
"""
|
||||
def forward(self, x, emb=None, cond=None, lateral=None):
|
||||
for layer in self:
|
||||
if isinstance(layer, TimestepBlock):
|
||||
'''if layer(x, emb=emb, cond=cond, lateral=lateral).shape[-1]==10:
|
||||
pdb.set_trace()'''
|
||||
x = layer(x, emb=emb, cond=cond, lateral=lateral)
|
||||
else:
|
||||
'''if layer(x).shape[-1]==10:
|
||||
pdb.set_trace()'''
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
@dataclass
|
||||
class ResBlockConfig(BaseConfig):
|
||||
channels: int
|
||||
emb_channels: int
|
||||
dropout: float
|
||||
out_channels: int = None
|
||||
# condition the resblock with time (and encoder's output)
|
||||
use_condition: bool = True
|
||||
# whether to use 3x3 conv for skip path when the channels aren't matched
|
||||
use_conv: bool = False
|
||||
# dimension of conv (always 1 = 1d)
|
||||
dims: int = 1
|
||||
up: bool = False
|
||||
down: bool = False
|
||||
# whether to condition with both time & encoder's output
|
||||
two_cond: bool = False
|
||||
# number of encoders' output channels
|
||||
cond_emb_channels: int = None
|
||||
# suggest: False
|
||||
has_lateral: bool = False
|
||||
lateral_channels: int = None
|
||||
# whether to init the convolution with zero weights
|
||||
# this is default from BeatGANs and seems to help learning
|
||||
use_zero_module: bool = True
|
||||
|
||||
def __post_init__(self):
|
||||
self.out_channels = self.out_channels or self.channels
|
||||
self.cond_emb_channels = self.cond_emb_channels or self.emb_channels
|
||||
|
||||
def make_model(self):
|
||||
return ResBlock(self)
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
"""
|
||||
A residual block that can optionally change the number of channels.
|
||||
|
||||
total layers:
|
||||
in_layers
|
||||
- norm
|
||||
- act
|
||||
- conv
|
||||
out_layers
|
||||
- norm
|
||||
- (modulation)
|
||||
- act
|
||||
- conv
|
||||
"""
|
||||
def __init__(self, conf: ResBlockConfig):
|
||||
super().__init__()
|
||||
self.conf = conf
|
||||
|
||||
#############################
|
||||
# IN LAYERS
|
||||
#############################
|
||||
assert conf.lateral_channels is None
|
||||
layers = [
|
||||
normalization(conf.channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(conf.dims, conf.channels, conf.out_channels, 3, padding=1) ## 3 is kernel size
|
||||
]
|
||||
self.in_layers = nn.Sequential(*layers)
|
||||
|
||||
self.updown = conf.up or conf.down
|
||||
|
||||
if conf.up:
|
||||
self.h_upd = Upsample(conf.channels, False, conf.dims)
|
||||
self.x_upd = Upsample(conf.channels, False, conf.dims)
|
||||
elif conf.down:
|
||||
self.h_upd = Downsample(conf.channels, False, conf.dims)
|
||||
self.x_upd = Downsample(conf.channels, False, conf.dims)
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
#############################
|
||||
# OUT LAYERS CONDITIONS
|
||||
#############################
|
||||
if conf.use_condition:
|
||||
# condition layers for the out_layers
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(conf.emb_channels, 2 * conf.out_channels),
|
||||
)
|
||||
|
||||
if conf.two_cond:
|
||||
self.cond_emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(conf.cond_emb_channels, conf.out_channels),
|
||||
)
|
||||
#############################
|
||||
# OUT LAYERS (ignored when there is no condition)
|
||||
#############################
|
||||
# original version
|
||||
conv = conv_nd(conf.dims,
|
||||
conf.out_channels,
|
||||
conf.out_channels,
|
||||
3,
|
||||
padding=1)
|
||||
if conf.use_zero_module:
|
||||
# zere out the weights
|
||||
# it seems to help training
|
||||
conv = zero_module(conv)
|
||||
|
||||
# construct the layers
|
||||
# - norm
|
||||
# - (modulation)
|
||||
# - act
|
||||
# - dropout
|
||||
# - conv
|
||||
layers = []
|
||||
layers += [
|
||||
normalization(conf.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=conf.dropout),
|
||||
conv,
|
||||
]
|
||||
self.out_layers = nn.Sequential(*layers)
|
||||
|
||||
#############################
|
||||
# SKIP LAYERS
|
||||
#############################
|
||||
if conf.out_channels == conf.channels:
|
||||
# cannot be used with gatedconv, also gatedconv is alsways used as the first block
|
||||
self.skip_connection = nn.Identity()
|
||||
else:
|
||||
if conf.use_conv:
|
||||
kernel_size = 3
|
||||
padding = 1
|
||||
else:
|
||||
kernel_size = 1
|
||||
padding = 0
|
||||
|
||||
self.skip_connection = conv_nd(conf.dims,
|
||||
conf.channels,
|
||||
conf.out_channels,
|
||||
kernel_size,
|
||||
padding=padding)
|
||||
|
||||
def forward(self, x, emb=None, cond=None, lateral=None):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
|
||||
Args:
|
||||
x: input
|
||||
lateral: lateral connection from the encoder
|
||||
"""
|
||||
return self._forward(x, emb, cond, lateral)
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
x,
|
||||
emb=None,
|
||||
cond=None,
|
||||
lateral=None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
lateral: required if "has_lateral" and non-gated, with gated, it can be supplied optionally
|
||||
"""
|
||||
if self.conf.has_lateral:
|
||||
# lateral may be supplied even if it doesn't require
|
||||
# the model will take the lateral only if "has_lateral"
|
||||
assert lateral is not None
|
||||
# x = F.interpolate(x, size=(lateral.size(2)), mode='linear' )
|
||||
x = th.cat([x, lateral], dim=1)
|
||||
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
h = in_rest(x)
|
||||
h = self.h_upd(h)
|
||||
x = self.x_upd(x)
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
|
||||
if self.conf.use_condition:
|
||||
# it's possible that the network may not receieve the time emb
|
||||
# this happens with autoenc and setting the time_at
|
||||
if emb is not None:
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
else:
|
||||
emb_out = None
|
||||
|
||||
if self.conf.two_cond:
|
||||
# it's possible that the network is two_cond
|
||||
# but it doesn't get the second condition
|
||||
# in which case, we ignore the second condition
|
||||
# and treat as if the network has one condition
|
||||
if cond is None:
|
||||
cond_out = None
|
||||
else:
|
||||
if not isinstance(cond, th.Tensor):
|
||||
assert isinstance(cond, dict)
|
||||
cond = cond['cond']
|
||||
cond_out = self.cond_emb_layers(cond).type(h.dtype)
|
||||
if cond_out is not None:
|
||||
while len(cond_out.shape) < len(h.shape):
|
||||
cond_out = cond_out[..., None]
|
||||
else:
|
||||
cond_out = None
|
||||
|
||||
# this is the new refactored code
|
||||
h = apply_conditions(
|
||||
h=h,
|
||||
emb=emb_out,
|
||||
cond=cond_out,
|
||||
layers=self.out_layers,
|
||||
scale_bias=1,
|
||||
in_channels=self.conf.out_channels,
|
||||
up_down_layer=None,
|
||||
)
|
||||
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
def apply_conditions(
|
||||
h,
|
||||
emb=None,
|
||||
cond=None,
|
||||
layers: nn.Sequential = None,
|
||||
scale_bias: float = 1,
|
||||
in_channels: int = 512,
|
||||
up_down_layer: nn.Module = None,
|
||||
):
|
||||
"""
|
||||
apply conditions on the feature maps
|
||||
|
||||
Args:
|
||||
emb: time conditional (ready to scale + shift)
|
||||
cond: encoder's conditional (ready to scale + shift)
|
||||
"""
|
||||
two_cond = emb is not None and cond is not None
|
||||
|
||||
if emb is not None:
|
||||
# adjusting shapes
|
||||
while len(emb.shape) < len(h.shape):
|
||||
emb = emb[..., None]
|
||||
|
||||
if two_cond:
|
||||
# adjusting shapes
|
||||
while len(cond.shape) < len(h.shape):
|
||||
cond = cond[..., None]
|
||||
# time first
|
||||
scale_shifts = [emb, cond]
|
||||
else:
|
||||
# "cond" is not used with single cond mode
|
||||
scale_shifts = [emb]
|
||||
|
||||
# support scale, shift or shift only
|
||||
for i, each in enumerate(scale_shifts):
|
||||
if each is None:
|
||||
# special case: the condition is not provided
|
||||
a = None
|
||||
b = None
|
||||
else:
|
||||
if each.shape[1] == in_channels * 2:
|
||||
a, b = th.chunk(each, 2, dim=1)
|
||||
else:
|
||||
a = each
|
||||
b = None
|
||||
scale_shifts[i] = (a, b)
|
||||
|
||||
# condition scale bias could be a list
|
||||
if isinstance(scale_bias, Number):
|
||||
biases = [scale_bias] * len(scale_shifts)
|
||||
else:
|
||||
# a list
|
||||
biases = scale_bias
|
||||
|
||||
# default, the scale & shift are applied after the group norm but BEFORE SiLU
|
||||
pre_layers, post_layers = layers[0], layers[1:]
|
||||
|
||||
# spilt the post layer to be able to scale up or down before conv
|
||||
# post layers will contain only the conv
|
||||
mid_layers, post_layers = post_layers[:-2], post_layers[-2:]
|
||||
|
||||
h = pre_layers(h)
|
||||
# scale and shift for each condition
|
||||
for i, (scale, shift) in enumerate(scale_shifts):
|
||||
# if scale is None, it indicates that the condition is not provided
|
||||
if scale is not None:
|
||||
h = h * (biases[i] + scale)
|
||||
if shift is not None:
|
||||
h = h + shift
|
||||
h = mid_layers(h)
|
||||
|
||||
# upscale or downscale if any just before the last conv
|
||||
if up_down_layer is not None:
|
||||
h = up_down_layer(h)
|
||||
h = post_layers(h)
|
||||
return h
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims,
|
||||
self.channels,
|
||||
self.out_channels,
|
||||
3,
|
||||
padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2),
|
||||
mode="nearest")
|
||||
else:
|
||||
# if x.shape[2] == 4:
|
||||
# feature = 9
|
||||
# x = F.interpolate(x, size=(feature), mode="nearest")
|
||||
# if x.shape[2] == 8:
|
||||
# feature = 9
|
||||
# x = F.interpolate(x, size=(feature), mode="nearest")
|
||||
# else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
self.stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = conv_nd(dims,
|
||||
self.channels,
|
||||
self.out_channels,
|
||||
3,
|
||||
stride=self.stride,
|
||||
padding=1)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
self.op = avg_pool_nd(dims, kernel_size=self.stride, stride=self.stride)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
# if x.shape[2] % 2 != 0:
|
||||
# op = avg_pool_nd(self.dims, kernel_size=3, stride=2)
|
||||
# return op(x)
|
||||
# if x.shape[2] % 2 != 0:
|
||||
# op = avg_pool_nd(self.dims, kernel_size=2, stride=1)
|
||||
# return op(x)
|
||||
# else:
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
An attention block that allows spatial positions to attend to each other.
|
||||
|
||||
Originally ported from here, but adapted to the N-d case.
|
||||
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
use_new_attention_order=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
if num_head_channels == -1:
|
||||
self.num_heads = num_heads
|
||||
else:
|
||||
assert (
|
||||
channels % num_head_channels == 0
|
||||
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
||||
self.num_heads = channels // num_head_channels
|
||||
self.norm = normalization(channels)
|
||||
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
||||
if use_new_attention_order:
|
||||
# split qkv before split heads
|
||||
self.attention = QKVAttention(self.num_heads)
|
||||
else:
|
||||
# split heads before split qkv
|
||||
self.attention = QKVAttentionLegacy(self.num_heads)
|
||||
|
||||
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
||||
|
||||
def forward(self, x):
|
||||
return self._forward(x)
|
||||
|
||||
def _forward(self, x):
|
||||
b, c, *spatial = x.shape
|
||||
x = x.reshape(b, c, -1)
|
||||
qkv = self.qkv(self.norm(x))
|
||||
h = self.attention(qkv)
|
||||
h = self.proj_out(h)
|
||||
return (x + h).reshape(b, c, *spatial)
|
||||
|
||||
|
||||
def count_flops_attn(model, _x, y):
|
||||
"""
|
||||
A counter for the `thop` package to count the operations in an
|
||||
attention operation.
|
||||
Meant to be used like:
|
||||
macs, params = thop.profile(
|
||||
model,
|
||||
inputs=(inputs, timestamps),
|
||||
custom_ops={QKVAttention: QKVAttention.count_flops},
|
||||
)
|
||||
"""
|
||||
b, c, *spatial = y[0].shape
|
||||
num_spatial = int(np.prod(spatial))
|
||||
# We perform two matmuls with the same number of ops.
|
||||
# The first computes the weight matrix, the second computes
|
||||
# the combination of the value vectors.
|
||||
matmul_ops = 2 * b * (num_spatial**2) * c
|
||||
model.total_ops += th.DoubleTensor([matmul_ops])
|
||||
|
||||
|
||||
class QKVAttentionLegacy(nn.Module):
|
||||
"""
|
||||
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
||||
"""
|
||||
def __init__(self, n_heads):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
|
||||
def forward(self, qkv):
|
||||
"""
|
||||
Apply QKV attention.
|
||||
|
||||
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
||||
:return: an [N x (H * C) x T] tensor after attention.
|
||||
"""
|
||||
bs, width, length = qkv.shape
|
||||
assert width % (3 * self.n_heads) == 0
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = th.einsum(
|
||||
"bct,bcs->bts", q * scale,
|
||||
k * scale) # More stable with f16 than dividing afterwards
|
||||
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = th.einsum("bts,bcs->bct", weight, v)
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
@staticmethod
|
||||
def count_flops(model, _x, y):
|
||||
return count_flops_attn(model, _x, y)
|
||||
|
||||
|
||||
class QKVAttention(nn.Module):
|
||||
"""
|
||||
A module which performs QKV attention and splits in a different order.
|
||||
"""
|
||||
def __init__(self, n_heads):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
|
||||
def forward(self, qkv):
|
||||
"""
|
||||
Apply QKV attention.
|
||||
|
||||
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
||||
:return: an [N x (H * C) x T] tensor after attention.
|
||||
"""
|
||||
bs, width, length = qkv.shape
|
||||
pdb.set_trace()
|
||||
assert width % (3 * self.n_heads) == 0
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.chunk(3, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = th.einsum(
|
||||
"bct,bcs->bts",
|
||||
(q * scale).view(bs * self.n_heads, ch, length),
|
||||
(k * scale).view(bs * self.n_heads, ch, length),
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = th.einsum("bts,bcs->bct", weight,
|
||||
v.reshape(bs * self.n_heads, ch, length))
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
@staticmethod
|
||||
def count_flops(model, _x, y):
|
||||
return count_flops_attn(model, _x, y)
|
||||
|
||||
|
||||
class AttentionPool2d(nn.Module):
|
||||
"""
|
||||
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
spacial_dim: int,
|
||||
embed_dim: int,
|
||||
num_heads_channels: int,
|
||||
output_dim: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(
|
||||
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5)
|
||||
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
||||
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
||||
self.num_heads = embed_dim // num_heads_channels
|
||||
self.attention = QKVAttention(self.num_heads)
|
||||
|
||||
def forward(self, x):
|
||||
b, c, *_spatial = x.shape
|
||||
x = x.reshape(b, c, -1) # NC(HW)
|
||||
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
||||
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
||||
x = self.qkv_proj(x)
|
||||
x = self.attention(x)
|
||||
x = self.c_proj(x)
|
||||
return x[:, :, 0]
|
Loading…
Add table
Add a link
Reference in a new issue