MST-MIXER/models/utils.py

249 lines
10 KiB
Python
Raw Normal View History

2024-07-08 11:41:28 +02:00
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.utils import ModelOutput
from typing import Optional, Tuple
class ELBO(nn.Module):
def __init__(self):
super(ELBO, self).__init__()
def forward(self, QA, PA):
QA_flattened = QA.view(-1).unsqueeze(-1)
PA_flattened = PA.view(-1).unsqueeze(-1)
QA_flattened = torch.cat([torch.zeros_like(QA_flattened), QA_flattened], dim=-1)
PA_flattened = torch.cat([torch.zeros_like(PA_flattened), PA_flattened], dim=-1)
log_QA = F.log_softmax(QA_flattened, dim=1)
log_PA = F.log_softmax(PA_flattened, dim=1)
QA_dist = torch.exp(log_QA)
loss_QA = torch.mean(log_QA * QA_dist)
loss_PA = torch.mean(log_PA * QA_dist)
loss = loss_QA - loss_PA
return loss
def seperate_nextqa_input_modalities(
features, i3d_rgb_interval, i3d_flow_interval, question_intervals,
vis_state_vector_idx, question_state_vector_idx,
attention_values=None):
""" We separate the multimodal input hidden states. The state token embeddings are left out (+1 while indexing)
Args:
features (_type_): _description_
i3d_rgb_interval (_type_): _description_
i3d_flow_interval (_type_): _description_
sam_interval (_type_): _description_
audio_interval (_type_): _description_
history_intervals (_type_): _description_
question_intervals (_type_): _description_
Returns:
_type_: _description_
"""
features_copy = features.clone() # .detach()
i3d_rgb_hidden = features_copy[:, i3d_rgb_interval[0]+1:i3d_rgb_interval[1], :]
i3d_flow_hidden = features_copy[:, i3d_flow_interval[0]+1:i3d_flow_interval[1], :]
question_hidden = []
features_split = torch.split(features_copy, 1, dim=0)
for ques_inter, feat in zip(question_intervals, features_split):
ques_idx = torch.arange(ques_inter[0]+1, ques_inter[1]).unsqueeze(0).unsqueeze(-1).repeat(1, 1, feat.size(-1)).to(feat.device)
question_hidden.append(torch.gather(feat, 1, ques_idx))
if attention_values is None:
i3d_rgb_att = None
i3d_flow_att = None
question_att = None
else:
attention_values = attention_values.mean(1)
i3d_rgb_att = attention_values[:, vis_state_vector_idx[0], vis_state_vector_idx[0]+1:vis_state_vector_idx[1]]
i3d_flow_att = attention_values[:, vis_state_vector_idx[1], vis_state_vector_idx[1]+1:question_state_vector_idx[0]]
question_att = [attention_values[i, question_state_vector_idx[i], question_intervals[i][0] + 1: question_intervals[i][1]] for i in range(len(question_state_vector_idx))]
features_list = [i3d_rgb_hidden, i3d_flow_hidden, question_hidden]
att = [i3d_rgb_att, i3d_flow_att, question_att]
return features_list, att
def seperate_input_modalities(
features, i3d_rgb_interval, i3d_flow_interval, sam_interval, audio_interval, history_intervals, question_intervals,
vis_state_vector_idx, history_state_vector_idx, question_state_vector_idx,
attention_values=None):
""" We separate the multimodal input hidden states. The state token embeddings are left out (+1 while indexing)
Args:
features (_type_): _description_
i3d_rgb_interval (_type_): _description_
i3d_flow_interval (_type_): _description_
sam_interval (_type_): _description_
audio_interval (_type_): _description_
history_intervals (_type_): _description_
question_intervals (_type_): _description_
Returns:
_type_: _description_
"""
features_copy = features.clone() # .detach()
i3d_rgb_hidden = features_copy[:, i3d_rgb_interval[0]+1:i3d_rgb_interval[1], :]
i3d_flow_hidden = features_copy[:, i3d_flow_interval[0]+1:i3d_flow_interval[1], :]
sam_hidden = features_copy[:, sam_interval[0]+1:sam_interval[1], :]
audio_hidden = features_copy[:, audio_interval[0]+1:audio_interval[1], :]
history_hidden = []
question_hidden = []
features_split = torch.split(features_copy, 1, dim=0)
for hist_inter, ques_inter, feat in zip(history_intervals, question_intervals, features_split):
hist_idx = torch.arange(hist_inter[0]+1, hist_inter[1]).unsqueeze(0).unsqueeze(-1).repeat(1, 1, feat.size(-1)).to(feat.device)
history_hidden.append(torch.gather(feat, 1, hist_idx))
ques_idx = torch.arange(ques_inter[0]+1, ques_inter[1]).unsqueeze(0).unsqueeze(-1).repeat(1, 1, feat.size(-1)).to(feat.device)
question_hidden.append(torch.gather(feat, 1, ques_idx))
if attention_values is None:
i3d_rgb_att = None
i3d_flow_att = None
sam_att = None
audio_att = None
history_att = None
question_att = None
else:
attention_values = attention_values.mean(1)
i3d_rgb_att = attention_values[:, vis_state_vector_idx[0], vis_state_vector_idx[0]+1:vis_state_vector_idx[1]]
i3d_flow_att = attention_values[:, vis_state_vector_idx[1], vis_state_vector_idx[1]+1:vis_state_vector_idx[2]]
sam_att = attention_values[:, vis_state_vector_idx[2], vis_state_vector_idx[2]+1:vis_state_vector_idx[3]]
audio_att = attention_values[:, vis_state_vector_idx[3], vis_state_vector_idx[3]+1:history_state_vector_idx[0] - 1]
history_att = [attention_values[i, history_state_vector_idx[i], history_intervals[i][0] + 1 : history_intervals[i][1]] for i in range(len(history_state_vector_idx))]
question_att = [attention_values[i, question_state_vector_idx[i], question_intervals[i][0] + 1: question_intervals[i][1]] for i in range(len(question_state_vector_idx))]
features_list = [i3d_rgb_hidden, i3d_flow_hidden, sam_hidden, audio_hidden, history_hidden, question_hidden]
att = [i3d_rgb_att, i3d_flow_att, sam_att, audio_att, history_att, question_att]
return features_list, att
def get_knn_graph(features, num_nn, device):
features = features.permute((1, 2, 0))
cosine_sim_pairwise = F.cosine_similarity(features, features.unsqueeze(1), dim=-2)
cosine_sim_pairwise = cosine_sim_pairwise.permute((2, 0, 1))
num_nn = min(num_nn, cosine_sim_pairwise.size(-1))
adj_mat = torch.zeros_like(cosine_sim_pairwise).to(device)
_, to_keep = torch.topk(cosine_sim_pairwise, num_nn, dim=-1, sorted=False)
adj_mat = adj_mat.scatter(-1, to_keep, torch.ones_like(adj_mat).to(device))
return adj_mat
def track_features_vis(features, att, top_k, device, node_idx=None):
"""Computes an adjacency matrix based on the nearset neighbor similiarity for
the i3d, audio, and sam input modalities. The tracked constituents of each modality
are randomly chosen (A_tilde in the paper).
"""
features = features.clone().detach()
top_k = min(features.size(1), top_k)
if att is None:
node_idx = torch.randint(low=0, high=features.size(1), size=(features.size(0), top_k))
else:
_, node_idx = torch.topk(att, top_k, dim=-1, sorted=False)
node_idx = node_idx.unsqueeze(-1).repeat(1, 1, features.size(-1)).to(device)
selected_features = torch.gather(features, 1, node_idx)
return selected_features, node_idx
def track_features_text(features, att, top_k, device, node_idx=None):
"""Computes an adjacency matrix based on the nearset neighbor similiarity for
the history and question inputs. The tracked constituents of each modality
are randomly chosen (A_tilde in the paper).
"""
hidden_dim = features[0].size(-1)
min_len = min([feat.size(1) for feat in features])
top_k = min(min_len, top_k)
if att is None:
node_idx = [torch.randint(low=0, high=feat.size(1), size=(feat.size(0), top_k)) for feat in features]
else:
node_idx = [torch.topk(a, top_k, dim=-1, sorted=False)[-1] for a in att]
node_idx = [idx.unsqueeze(-1).repeat(1, 1, hidden_dim).to(device) for idx in node_idx]
selected_features = [torch.gather(feat, 1, idx) for feat, idx in zip(features, node_idx)]
selected_features = torch.cat(selected_features, dim=0)
return selected_features, node_idx
def diag_tensor(tensors):
device = tensors[0].device
n = sum([t.size(-1) for t in tensors])
bsz = tensors[0].size(0)
diag_tensor = torch.zeros((bsz, n, n)).float().to(device)
delimiter = 0
delimiters = [0]
for t in tensors:
diag_tensor[:, delimiter:delimiter+t.size(-1), delimiter:delimiter+t.size(-1)] = t
delimiter += t.size(-1)
delimiters.append(delimiter)
return diag_tensor, delimiters
def embed_graphs(features, delimiters):
state_vectors = []
for i in range(len(delimiters) - 1):
state_vectors.append(features[:, delimiters[i]:delimiters[i+1], :].mean(dim=1))
return state_vectors
class AVSDEncoderOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
QAs_local = None
PAs_local = None
QA_global = None
PA_global = None
state_vectors = None
class AVSDSeq2SeqModelOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
QAs_local = None
PAs_local = None
QA_global = None
PA_global = None
state_vectors = None
class AVSDSeq2SeqLMOutput(ModelOutput):
gen_loss: Optional[torch.FloatTensor] = None
elbo_loss_global: Optional[torch.FloatTensor] = None
elbo_loss_local: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_QAs_local = None
encoder_PAs_local = None
encoder_QA_global = None
encoder_PA_global = None
encoder_state_vectors = None