import torch import torch.nn as nn import torch.nn.functional as F from transformers.utils import ModelOutput from typing import Optional, Tuple class ELBO(nn.Module): def __init__(self): super(ELBO, self).__init__() def forward(self, QA, PA): QA_flattened = QA.view(-1).unsqueeze(-1) PA_flattened = PA.view(-1).unsqueeze(-1) QA_flattened = torch.cat([torch.zeros_like(QA_flattened), QA_flattened], dim=-1) PA_flattened = torch.cat([torch.zeros_like(PA_flattened), PA_flattened], dim=-1) log_QA = F.log_softmax(QA_flattened, dim=1) log_PA = F.log_softmax(PA_flattened, dim=1) QA_dist = torch.exp(log_QA) loss_QA = torch.mean(log_QA * QA_dist) loss_PA = torch.mean(log_PA * QA_dist) loss = loss_QA - loss_PA return loss def seperate_nextqa_input_modalities( features, i3d_rgb_interval, i3d_flow_interval, question_intervals, vis_state_vector_idx, question_state_vector_idx, attention_values=None): """ We separate the multimodal input hidden states. The state token embeddings are left out (+1 while indexing) Args: features (_type_): _description_ i3d_rgb_interval (_type_): _description_ i3d_flow_interval (_type_): _description_ sam_interval (_type_): _description_ audio_interval (_type_): _description_ history_intervals (_type_): _description_ question_intervals (_type_): _description_ Returns: _type_: _description_ """ features_copy = features.clone() # .detach() i3d_rgb_hidden = features_copy[:, i3d_rgb_interval[0]+1:i3d_rgb_interval[1], :] i3d_flow_hidden = features_copy[:, i3d_flow_interval[0]+1:i3d_flow_interval[1], :] question_hidden = [] features_split = torch.split(features_copy, 1, dim=0) for ques_inter, feat in zip(question_intervals, features_split): ques_idx = torch.arange(ques_inter[0]+1, ques_inter[1]).unsqueeze(0).unsqueeze(-1).repeat(1, 1, feat.size(-1)).to(feat.device) question_hidden.append(torch.gather(feat, 1, ques_idx)) if attention_values is None: i3d_rgb_att = None i3d_flow_att = None question_att = None else: attention_values = attention_values.mean(1) i3d_rgb_att = attention_values[:, vis_state_vector_idx[0], vis_state_vector_idx[0]+1:vis_state_vector_idx[1]] i3d_flow_att = attention_values[:, vis_state_vector_idx[1], vis_state_vector_idx[1]+1:question_state_vector_idx[0]] question_att = [attention_values[i, question_state_vector_idx[i], question_intervals[i][0] + 1: question_intervals[i][1]] for i in range(len(question_state_vector_idx))] features_list = [i3d_rgb_hidden, i3d_flow_hidden, question_hidden] att = [i3d_rgb_att, i3d_flow_att, question_att] return features_list, att def seperate_input_modalities( features, i3d_rgb_interval, i3d_flow_interval, sam_interval, audio_interval, history_intervals, question_intervals, vis_state_vector_idx, history_state_vector_idx, question_state_vector_idx, attention_values=None): """ We separate the multimodal input hidden states. The state token embeddings are left out (+1 while indexing) Args: features (_type_): _description_ i3d_rgb_interval (_type_): _description_ i3d_flow_interval (_type_): _description_ sam_interval (_type_): _description_ audio_interval (_type_): _description_ history_intervals (_type_): _description_ question_intervals (_type_): _description_ Returns: _type_: _description_ """ features_copy = features.clone() # .detach() i3d_rgb_hidden = features_copy[:, i3d_rgb_interval[0]+1:i3d_rgb_interval[1], :] i3d_flow_hidden = features_copy[:, i3d_flow_interval[0]+1:i3d_flow_interval[1], :] sam_hidden = features_copy[:, sam_interval[0]+1:sam_interval[1], :] audio_hidden = features_copy[:, audio_interval[0]+1:audio_interval[1], :] history_hidden = [] question_hidden = [] features_split = torch.split(features_copy, 1, dim=0) for hist_inter, ques_inter, feat in zip(history_intervals, question_intervals, features_split): hist_idx = torch.arange(hist_inter[0]+1, hist_inter[1]).unsqueeze(0).unsqueeze(-1).repeat(1, 1, feat.size(-1)).to(feat.device) history_hidden.append(torch.gather(feat, 1, hist_idx)) ques_idx = torch.arange(ques_inter[0]+1, ques_inter[1]).unsqueeze(0).unsqueeze(-1).repeat(1, 1, feat.size(-1)).to(feat.device) question_hidden.append(torch.gather(feat, 1, ques_idx)) if attention_values is None: i3d_rgb_att = None i3d_flow_att = None sam_att = None audio_att = None history_att = None question_att = None else: attention_values = attention_values.mean(1) i3d_rgb_att = attention_values[:, vis_state_vector_idx[0], vis_state_vector_idx[0]+1:vis_state_vector_idx[1]] i3d_flow_att = attention_values[:, vis_state_vector_idx[1], vis_state_vector_idx[1]+1:vis_state_vector_idx[2]] sam_att = attention_values[:, vis_state_vector_idx[2], vis_state_vector_idx[2]+1:vis_state_vector_idx[3]] audio_att = attention_values[:, vis_state_vector_idx[3], vis_state_vector_idx[3]+1:history_state_vector_idx[0] - 1] history_att = [attention_values[i, history_state_vector_idx[i], history_intervals[i][0] + 1 : history_intervals[i][1]] for i in range(len(history_state_vector_idx))] question_att = [attention_values[i, question_state_vector_idx[i], question_intervals[i][0] + 1: question_intervals[i][1]] for i in range(len(question_state_vector_idx))] features_list = [i3d_rgb_hidden, i3d_flow_hidden, sam_hidden, audio_hidden, history_hidden, question_hidden] att = [i3d_rgb_att, i3d_flow_att, sam_att, audio_att, history_att, question_att] return features_list, att def get_knn_graph(features, num_nn, device): features = features.permute((1, 2, 0)) cosine_sim_pairwise = F.cosine_similarity(features, features.unsqueeze(1), dim=-2) cosine_sim_pairwise = cosine_sim_pairwise.permute((2, 0, 1)) num_nn = min(num_nn, cosine_sim_pairwise.size(-1)) adj_mat = torch.zeros_like(cosine_sim_pairwise).to(device) _, to_keep = torch.topk(cosine_sim_pairwise, num_nn, dim=-1, sorted=False) adj_mat = adj_mat.scatter(-1, to_keep, torch.ones_like(adj_mat).to(device)) return adj_mat def track_features_vis(features, att, top_k, device, node_idx=None): """Computes an adjacency matrix based on the nearset neighbor similiarity for the i3d, audio, and sam input modalities. The tracked constituents of each modality are randomly chosen (A_tilde in the paper). """ features = features.clone().detach() top_k = min(features.size(1), top_k) if att is None: node_idx = torch.randint(low=0, high=features.size(1), size=(features.size(0), top_k)) else: _, node_idx = torch.topk(att, top_k, dim=-1, sorted=False) node_idx = node_idx.unsqueeze(-1).repeat(1, 1, features.size(-1)).to(device) selected_features = torch.gather(features, 1, node_idx) return selected_features, node_idx def track_features_text(features, att, top_k, device, node_idx=None): """Computes an adjacency matrix based on the nearset neighbor similiarity for the history and question inputs. The tracked constituents of each modality are randomly chosen (A_tilde in the paper). """ hidden_dim = features[0].size(-1) min_len = min([feat.size(1) for feat in features]) top_k = min(min_len, top_k) if att is None: node_idx = [torch.randint(low=0, high=feat.size(1), size=(feat.size(0), top_k)) for feat in features] else: node_idx = [torch.topk(a, top_k, dim=-1, sorted=False)[-1] for a in att] node_idx = [idx.unsqueeze(-1).repeat(1, 1, hidden_dim).to(device) for idx in node_idx] selected_features = [torch.gather(feat, 1, idx) for feat, idx in zip(features, node_idx)] selected_features = torch.cat(selected_features, dim=0) return selected_features, node_idx def diag_tensor(tensors): device = tensors[0].device n = sum([t.size(-1) for t in tensors]) bsz = tensors[0].size(0) diag_tensor = torch.zeros((bsz, n, n)).float().to(device) delimiter = 0 delimiters = [0] for t in tensors: diag_tensor[:, delimiter:delimiter+t.size(-1), delimiter:delimiter+t.size(-1)] = t delimiter += t.size(-1) delimiters.append(delimiter) return diag_tensor, delimiters def embed_graphs(features, delimiters): state_vectors = [] for i in range(len(delimiters) - 1): state_vectors.append(features[:, delimiters[i]:delimiters[i+1], :].mean(dim=1)) return state_vectors class AVSDEncoderOutput(ModelOutput): last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None QAs_local = None PAs_local = None QA_global = None PA_global = None state_vectors = None class AVSDSeq2SeqModelOutput(ModelOutput): last_hidden_state: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None QAs_local = None PAs_local = None QA_global = None PA_global = None state_vectors = None class AVSDSeq2SeqLMOutput(ModelOutput): gen_loss: Optional[torch.FloatTensor] = None elbo_loss_global: Optional[torch.FloatTensor] = None elbo_loss_local: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_QAs_local = None encoder_PAs_local = None encoder_QA_global = None encoder_PA_global = None encoder_state_vectors = None