OGC/docs/evaluate_args.md

38 lines
3.3 KiB
Markdown
Raw Normal View History

2024-06-25 16:22:33 +02:00
# Command-line usage guide for `minimax.evaluate`
You can evaluate student agent checkpoints using `minimax.evaluate` as follows:
```bash
python -m minimax.evaluate \
--seed 1 \
--log_dir <absolute path log directory> \
--xpid_prefix <select checkpoints with xpids matching this prefix> \
--env_names <csv string of test environment names> \
--n_episodes <number of trials per test environment> \
--results_path <path to results folder> \
--results_fname <filename of output results csv>
```
Some behaviors of `minimax.evaluate` to be aware of:
- This command will search `log_dir` for all experiment directories with names matching `xpid_prefix` and evaluate the checkpoint named `<checkpoint_name>.pkl`.
- `minimax.evaluate` assumes xpid values end with a unique index, so that they match the regex `.*_[0-9]+$`.
- The results will be averaged over all such checkpoints (at most one checkpoint per matching experiment folder). Using the `--xpid_prefix` argument can be useful for evaluating corresponding to the same experimental configuration with different training seeds (and thus share an xpid prefix, e.g. <xpid_prefix_0>, <xpid_prefix_1>, <xpid_prefix_2>).
If you would like to evaluate a checkpoint for only a single experiment, specify the full experiment directory name using `--xpid` instead of using `--xpid_prefix`.
## All command-line arguments
| Argument | Description |
| ----------------- | -------------------------------------------------------------------------------------------------------------------------------- |
| `seed` | Random seed for evaluation |
| `log_dir` | Directory containing experiment folders |
| `xpid` | Name of experiment folder, i.e. the experiment ID |
| `xpid_prefix` | Evaluate and average results over checkpoints for experiments with experiment IDs matching this prefix (ignores `--xpid` if set) |
| `checkpoint_name` | Name of checkpoint to evaluate (in each matching experiment folder) |
| `env_names` | Number of devices over which to shard the environment batch dimension |
| `n_episodes` | Number of students in the autocurriculum |
| `agent_idxs` | Indices of student agents to evaluate (csv of indices or `*` for all indices) |
| `results_path` | Number of parallel environments |
| `results_fname` | Number of parallel trials per environment (environment) |
| `render_mode` | If set, renders the evaluation episode. Requires disabling JIT. Use `'ipython'` if rendering inside an IPython notebook. |