OLViT: Multi-Modal State Tracking via Attention-Based Embeddings for Video-Grounded Dialog

**[Adnen Abdessaied][4],   [Manuel von Hochmeister][5],   [Andreas Bulling][6]**

**COLING 2024**, Turin, Italy
**[[Paper][7]]** ----------------

# Citation If you find our code useful or use it in your own projects, please cite our paper: ``` @InProceedings{abdessaied24_coling, author = {Abdessaied, Adnen and Hochmeister, Manuel and Bulling, Andreas}, title = {{OLViT: Multi-Modal State Tracking via Attention-Based Embeddings for Video-Grounded Dialog}}, booktitle = {Proceedings of the International Conference on Computational Linguistics (COLING)}, month = {May}, year = {2024}, } ``` # Table of Contents * [Setup and Dependencies](#Setup-and-Dependencies) * [Download Data](#Download-Data) * [Training](#Training) * [Testing](#Testing) * [Results](#Results) * [Acknowledgements](#Acknowledgements) # Setup and Dependencies We implemented our model using Python 3.7, PyTorch 1.11.0 (CUDA 11.3, CuDNN 8.3.2) and PyTorch Lightning. We recommend to setup a virtual environment using Anaconda.
1. Install [git lfs][1] on your system 2. Clone our repository to download a checpint of our best model and our code ```shell git lfs install git clone this_repo.git ``` 3. Create a conda environment and install dependencies ```shell conda create -n olvit python=3.7 conda activate olvit conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch pip install pytorch-lightning==1.6.3 pip install transformers==4.19.2 pip install torchtext==0.12.0 pip install wandb nltk pandas ``` # Download Data 1. [DVD][2] and [SIMMC 2.1][3] data are included in this repository and will be downloaded using git lfs 2. Setup the data by executing ```shell chmod u+x setup_data.sh ./setup_data.sh ``` 3. This will unpack all the data necessary in ```data/dvd/``` and ```data/simmc/``` # Training We trained our model on 3 Nvidia Tesla V100-32GB GPUs. The default hyperparameters need to be adjusted if your setup differs from ours. ## DVD 1. Adjust the config file for DVD according to your hardware specifications in ```config/dvd.json``` 2. Execute ```shell CUDA_VISIBLE_DEVICES=0,1,2 python train.py --cfg_path config/dvd.json ``` 3. Checkpoints will be saved in ```checkpoints/dvd/``` ## SIMMC 2.1 1. Adjust the config file for SIMMC 2.1 according to your hardware specifications in ```config/simmc.json``` 2. Execute ```shell CUDA_VISIBLE_DEVICES=0,1,2 python train.py --cfg_path config/simmc.json ``` 3. Checkpoints will be saved in ```checkpoints/simmc/``` # Testing 1. Execute ```shell CUDA_VISIBLE_DEVICES=0 python test.py --ckpt_path --cfg_path ``` # Results Training using the default config and a similar hardware setup as ours will result in the following performance ## DVD

## SIMMC 2.1

# Acknowledgements Our work relied on the codebases of [DVD][2] and [SIMMC][3]. Thanks to the authors for sharing their code. [1]: https://git-lfs.com/ [2]: https://github.com/facebookresearch/DVDialogues/ [3]: https://github.com/facebookresearch/simmc2/ [4]: https://perceptualui.org/people/abdessaied/ [5]: https://www.linkedin.com/in/manuel-von-hochmeister-285416202/ [6]: https://www.perceptualui.org/people/bulling/ [7]: none