SummAct/preprocess/create_steps.py
2025-04-10 20:14:17 +02:00

97 lines
No EOL
4 KiB
Python

from tqdm import tqdm
import json
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
def get_tokenizer(model_name_or_path):
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, device_map={"":0})
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
return tokenizer
def get_model(model_name_or_path):
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map={"":0})
return model
def read_json_file(filename):
with open(filename, 'r') as infile:
data = json.load(infile)
return data
if __name__ == "__main__":
model_name_or_path = "Mistral-7B-v0.1/snapshots/26bca36bde8333b5d7f72e9ed20ccda6a618af24"
tokenizer = get_tokenizer(model_name_or_path)
model = get_model(model_name_or_path)
# load prompts
with open("your-path-to-data/train_prompt.txt", "r") as f:
train_prompt = f.read()
with open("your-path-to-data/test_prompt.txt", "r") as f:
test_prompt = f.read()
for foldername in ['train','test_domain','test_website','test_task']:
SAVE_PATH = f"your-path-to-data/{foldername}"
for idx in range(100):
savejsonfilename = f"{SAVE_PATH}/{foldername}_{idx}_with_steps_insert_mistral.json"
jsonfilename = f"{SAVE_PATH}/{foldername}_{idx}_with_actions_description_insert.json"
if not os.path.exists(jsonfilename):
break
data = read_json_file(jsonfilename)
if os.path.exists(savejsonfilename):
data = read_json_file(savejsonfilename)
actions_steps = []
for i in tqdm(range(len(data)), desc="Steps_Creation"):
if "train" in foldername: # include task
message = f"""Website: {data[i]["website_en"]}
Domain: {data[i]["domain_en"]}
Sub-domain: {data[i]["subdomain_en"]}
Task: {data[i]["task_description"]}
Actions: {data[i]["task_subintention"]}\n
# OUTPUT #
"""
prompt = train_prompt
else: # exclude task
message = f"""Website: {data[i]["website_en"]}
Domain: {data[i]["domain_en"]}
Sub-domain: {data[i]["subdomain_en"]}
Actions: {data[i]["task_subintention"]}\n
# OUTPUT #
"""
prompt = test_prompt
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": message}
]
messages = 'System: ' + prompt + 'User: ' + message
model_inputs = tokenizer(messages, return_tensors="pt").to("cuda")
assert len(model_inputs['input_ids'])<=4096
generated_ids = model.generate(**model_inputs,max_new_tokens=1024, do_sample=False, top_p= 0.95, repetition_penalty=1.2)
json_object = tokenizer.batch_decode(generated_ids)[0]
answer = json_object.split('Sub-intentions: [')[-1].split('\n')
final_answer = []
for a in answer:
a = a.strip()
if '</s>' in a:
a = a.split('</s>')[0]
if len(a)==0:
continue
while a[0]=='"':
a = a[1:]
if len(a)==0:
break
if len(a)==0:
continue
while a[-1] in ['"', ',', ']', ]:
a = a[:-1]
if len(a)==0:
break
if len(a)==0:
continue
final_answer.append(a)
data[i]['steps'] = final_answer
with open(savejsonfilename, 'w') as json_file:
json.dump(data, json_file)