initial commit

This commit is contained in:
Andreas Bulling 2025-06-24 08:38:09 +02:00
commit a82bbc593e
129 changed files with 33981 additions and 0 deletions

View file

@ -0,0 +1,273 @@
from sentence_transformers.cross_encoder import CrossEncoder
import os
import torch
import json
import numpy as np
def scores_to_ranks(scores: torch.Tensor):
"""Convert model output scores into ranks."""
batch_size, num_rounds, num_options = scores.size()
scores = scores.view(-1, num_options)
# sort in descending order - largest score gets highest rank
sorted_ranks, ranked_idx = scores.sort(1, descending=True)
# i-th position in ranked_idx specifies which score shall take this
# position but we want i-th position to have rank of score at that
# position, do this conversion
ranks = ranked_idx.clone().fill_(0)
for i in range(ranked_idx.size(0)):
for j in range(num_options):
ranks[i][ranked_idx[i][j]] = j
# convert from 0-99 ranks to 1-100 ranks
ranks += 1
ranks = ranks.view(batch_size, num_rounds, num_options)
return ranks
class SparseGTMetrics(object):
"""
A class to accumulate all metrics with sparse ground truth annotations.
These include Recall (@ 1, 5, 10), Mean Rank and Mean Reciprocal Rank.
"""
def __init__(self):
self._rank_list = []
def observe(
self, predicted_scores: torch.Tensor, target_ranks: torch.Tensor
):
predicted_scores = predicted_scores.detach()
# shape: (batch_size, num_rounds, num_options)
predicted_ranks = scores_to_ranks(predicted_scores)
batch_size, num_rounds, num_options = predicted_ranks.size()
# collapse batch dimension
predicted_ranks = predicted_ranks.view(
batch_size * num_rounds, num_options
)
# shape: (batch_size * num_rounds, )
target_ranks = target_ranks.view(batch_size * num_rounds).long()
# shape: (batch_size * num_rounds, )
predicted_gt_ranks = predicted_ranks[
torch.arange(batch_size * num_rounds), target_ranks
]
self._rank_list.extend(list(predicted_gt_ranks.cpu().numpy()))
def retrieve(self, reset: bool = True):
num_examples = len(self._rank_list)
if num_examples > 0:
# convert to numpy array for easy calculation.
__rank_list = torch.tensor(self._rank_list).float()
metrics = {
"r@1": torch.mean((__rank_list <= 1).float()).item(),
"r@5": torch.mean((__rank_list <= 5).float()).item(),
"r@10": torch.mean((__rank_list <= 10).float()).item(),
"mean": torch.mean(__rank_list).item(),
"mrr": torch.mean(__rank_list.reciprocal()).item(),
}
else:
metrics = {}
if reset:
self.reset()
return metrics
def reset(self):
self._rank_list = []
class NDCG(object):
def __init__(self):
self._ndcg_numerator = 0.0
self._ndcg_denominator = 0.0
def observe(
self, predicted_scores: torch.Tensor, target_relevance: torch.Tensor
):
"""
Observe model output scores and target ground truth relevance and
accumulate NDCG metric.
Parameters
----------
predicted_scores: torch.Tensor
A tensor of shape (batch_size, num_options), because dense
annotations are available for 1 randomly picked round out of 10.
target_relevance: torch.Tensor
A tensor of shape same as predicted scores, indicating ground truth
relevance of each answer option for a particular round.
"""
predicted_scores = predicted_scores.detach()
# shape: (batch_size, 1, num_options)
predicted_scores = predicted_scores.unsqueeze(1)
predicted_ranks = scores_to_ranks(predicted_scores)
# shape: (batch_size, num_options)
predicted_ranks = predicted_ranks.squeeze(1)
batch_size, num_options = predicted_ranks.size()
k = torch.sum(target_relevance != 0, dim=-1)
# shape: (batch_size, num_options)
_, rankings = torch.sort(predicted_ranks, dim=-1)
# Sort relevance in descending order so highest relevance gets top rnk.
_, best_rankings = torch.sort(
target_relevance, dim=-1, descending=True
)
# shape: (batch_size, )
batch_ndcg = []
for batch_index in range(batch_size):
num_relevant = k[batch_index]
dcg = self._dcg(
rankings[batch_index][:num_relevant],
target_relevance[batch_index],
)
best_dcg = self._dcg(
best_rankings[batch_index][:num_relevant],
target_relevance[batch_index],
)
batch_ndcg.append(dcg / best_dcg)
self._ndcg_denominator += batch_size
self._ndcg_numerator += sum(batch_ndcg)
def _dcg(self, rankings: torch.Tensor, relevance: torch.Tensor):
sorted_relevance = relevance[rankings].cpu().float()
discounts = torch.log2(torch.arange(len(rankings)).float() + 2)
return torch.sum(sorted_relevance / discounts, dim=-1)
def retrieve(self, reset: bool = True):
if self._ndcg_denominator > 0:
metrics = {
"ndcg": float(self._ndcg_numerator / self._ndcg_denominator)
}
else:
metrics = {}
if reset:
self.reset()
return metrics
def reset(self):
self._ndcg_numerator = 0.0
self._ndcg_denominator = 0.0
annos_path = '/pfss/mlde/workspaces/mlde_wsp_Rohrbach/data/annotations/visdial_v1.0/visdial_1.0_val.json'
with open(annos_path, 'r') as f:
data = json.load(f)['data']
dense_annos_path = '/pfss/mlde/workspaces/mlde_wsp_Rohrbach/data/annotations/visdial_v1.0/visdial_1.0_val_dense_annotations.json'
with open(dense_annos_path, 'r') as f:
dense_data = json.load(f)
dense_data = {str(d['image_id']) + '_' + str(d['round_id']): d['gt_relevance'] for d in dense_data}
results_path = '/pfss/mlde/workspaces/mlde_wsp_Rohrbach/users/ma35vahy/V2Dial_new_v2/output/visdial_before_supplementary/zeroshot_visdial_after_avsd_4_frames_3_rounds_ft_fp16_googleflant5large_results_dstc10_beam_depth_4_lenPen_0.3.json'
with open(results_path, 'r') as f:
results = json.load(f)
all_answers = data['answers']
all_questions = data['questions']
dialogs = data['dialogs']
dialogs_dict = {}
for dialog in dialogs:
image_id = dialog['image_id']
for i, turn in enumerate(dialog['dialog']):
answer_opts = [all_answers[a] for a in turn['answer_options']]
dialogs_dict[str(image_id) + '_' + str(i+1)] = {
'answer_opts': answer_opts,
'gt_index': turn['gt_index']
}
# print('bla')
sparse_metrics = SparseGTMetrics()
ndcg = NDCG()
# 1. Load a pretrained CrossEncoder model
model = CrossEncoder("cross-encoder/stsb-roberta-large")
for i, (res_key, res) in enumerate(results.items()):
print('[INFO] {} / {}'.format(i+1, len(results)))
answer_opts = dialogs_dict[res_key]['answer_opts']
gt_index = torch.tensor(dialogs_dict[res_key]['gt_index'])
gt_answer = answer_opts[gt_index]
sentence_combinations = [[res, opt] for opt in answer_opts]
scores = model.predict(sentence_combinations)
scores = torch.from_numpy(scores).unsqueeze(0).unsqueeze(0)
# scores = torch.tensor([ratio(res, answer_opt) for answer_opt in answer_opts]).unsqueeze(0).unsqueeze(0)
# scores = model.rank(res, answer_opts)
ranked_idx = scores_to_ranks(scores).squeeze().tolist()
new_order = np.argsort(ranked_idx)
# ranked_answers = [answer_opts[idx] for idx in new_order]
best_pick = answer_opts[new_order[0]]
sparse_metrics.observe(scores, gt_index)
if res_key in dense_data:
gt_relevance = torch.tensor(dense_data[res_key]).unsqueeze(0)
ndcg.observe(scores.squeeze(0), gt_relevance)
# print('bla')
print(sparse_metrics.retrieve())
print(ndcg.retrieve())
# We want to compute the similarity between the query sentence...
# query = "A man is eating pasta."
# # ... and all sentences in the corpus
# corpus = [
# "A man is eating food.",
# "A man is eating a piece of bread.",
# "The girl is carrying a baby.",
# "A man is riding a horse.",
# "A woman is playing violin.",
# "Two men pushed carts through the woods.",
# "A man is riding a white horse on an enclosed ground.",
# "A monkey is playing drums.",
# "A cheetah is running behind its prey.",
# ]
# # 2. We rank all sentences in the corpus for the query
# ranks = model.rank(query, corpus)
# # Print the scores
# print("Query: ", query)
# for rank in ranks:
# print(f"{rank['score']:.2f}\t{corpus[rank['corpus_id']]}")
# """
# Query: A man is eating pasta.
# 0.67 A man is eating food.
# 0.34 A man is eating a piece of bread.
# 0.08 A man is riding a horse.
# 0.07 A man is riding a white horse on an enclosed ground.
# 0.01 The girl is carrying a baby.
# 0.01 Two men pushed carts through the woods.
# 0.01 A monkey is playing drums.
# 0.01 A woman is playing violin.
# 0.01 A cheetah is running behind its prey.
# """
# # 3. Alternatively, you can also manually compute the score between two sentences
# import numpy as np
# sentence_combinations = [[query, sentence] for sentence in corpus]
# scores = model.predict(sentence_combinations)
# # Sort the scores in decreasing order to get the corpus indices
# ranked_indices = np.argsort(scores)[::-1]
# print("Scores:", scores)
# print("Indices:", ranked_indices)
# """
# Scores: [0.6732372, 0.34102544, 0.00542465, 0.07569341, 0.00525378, 0.00536814, 0.06676237, 0.00534825, 0.00516717]
# Indices: [0 1 3 6 2 5 7 4 8]
# """