initial commit
This commit is contained in:
commit
a82bbc593e
129 changed files with 33981 additions and 0 deletions
474
models/common/config.py
Executable file
474
models/common/config.py
Executable file
|
@ -0,0 +1,474 @@
|
|||
"""
|
||||
Copyright (c) 2022, salesforce.com, inc.
|
||||
All rights reserved.
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
"""
|
||||
|
||||
import logging
|
||||
import json
|
||||
from typing import Dict
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
from minigpt4.common.registry import registry
|
||||
|
||||
|
||||
class Config:
|
||||
def __init__(self, args):
|
||||
self.config = {}
|
||||
|
||||
self.args = args
|
||||
|
||||
# Register the config and configuration for setup
|
||||
registry.register("configuration", self)
|
||||
|
||||
user_config = self._build_opt_list(self.args.options)
|
||||
|
||||
config = OmegaConf.load(self.args.cfg_path)
|
||||
|
||||
runner_config = self.build_runner_config(config)
|
||||
model_config = self.build_model_config(config, **user_config)
|
||||
dataset_config = self.build_dataset_config(config)
|
||||
|
||||
# Validate the user-provided runner configuration
|
||||
# model and dataset configuration are supposed to be validated by the respective classes
|
||||
# [TODO] validate the model/dataset configuration
|
||||
# self._validate_runner_config(runner_config)
|
||||
|
||||
# Override the default configuration with user options.
|
||||
self.config = OmegaConf.merge(
|
||||
runner_config, model_config, dataset_config, user_config
|
||||
)
|
||||
|
||||
def _validate_runner_config(self, runner_config):
|
||||
"""
|
||||
This method validates the configuration, such that
|
||||
1) all the user specified options are valid;
|
||||
2) no type mismatches between the user specified options and the config.
|
||||
"""
|
||||
runner_config_validator = create_runner_config_validator()
|
||||
runner_config_validator.validate(runner_config)
|
||||
|
||||
def _build_opt_list(self, opts):
|
||||
opts_dot_list = self._convert_to_dot_list(opts)
|
||||
return OmegaConf.from_dotlist(opts_dot_list)
|
||||
|
||||
@staticmethod
|
||||
def build_model_config(config, **kwargs):
|
||||
model = config.get("model", None)
|
||||
assert model is not None, "Missing model configuration file."
|
||||
|
||||
model_cls = registry.get_model_class(model.arch)
|
||||
assert model_cls is not None, f"Model '{model.arch}' has not been registered."
|
||||
|
||||
model_type = kwargs.get("model.model_type", None)
|
||||
if not model_type:
|
||||
model_type = model.get("model_type", None)
|
||||
# else use the model type selected by user.
|
||||
|
||||
assert model_type is not None, "Missing model_type."
|
||||
|
||||
print("--------------")
|
||||
print("model arch",model.arch)
|
||||
print("model cls",model_cls)
|
||||
|
||||
model_config_path = model_cls.default_config_path(model_type=model_type)
|
||||
|
||||
model_config = OmegaConf.create()
|
||||
# hierarchy override, customized config > default config
|
||||
model_config = OmegaConf.merge(
|
||||
model_config,
|
||||
OmegaConf.load(model_config_path),
|
||||
{"model": config["model"]},
|
||||
)
|
||||
|
||||
return model_config
|
||||
|
||||
@staticmethod
|
||||
def build_runner_config(config):
|
||||
return {"run": config.run}
|
||||
|
||||
@staticmethod
|
||||
def build_dataset_config(config):
|
||||
datasets = config.get("datasets", None)
|
||||
if datasets is None:
|
||||
raise KeyError(
|
||||
"Expecting 'datasets' as the root key for dataset configuration."
|
||||
)
|
||||
|
||||
dataset_config = OmegaConf.create()
|
||||
|
||||
for dataset_name in datasets:
|
||||
|
||||
print("dataset name", dataset_name)
|
||||
builder_cls = registry.get_builder_class(dataset_name)
|
||||
|
||||
dataset_config_type = datasets[dataset_name].get("type", "default")
|
||||
dataset_config_path = builder_cls.default_config_path(
|
||||
type=dataset_config_type
|
||||
)
|
||||
|
||||
# hierarchy override, customized config > default config
|
||||
dataset_config = OmegaConf.merge(
|
||||
dataset_config,
|
||||
OmegaConf.load(dataset_config_path),
|
||||
{"datasets": {dataset_name: config["datasets"][dataset_name]}},
|
||||
)
|
||||
|
||||
return dataset_config
|
||||
|
||||
def _convert_to_dot_list(self, opts):
|
||||
if opts is None:
|
||||
opts = []
|
||||
|
||||
if len(opts) == 0:
|
||||
return opts
|
||||
|
||||
has_equal = opts[0].find("=") != -1
|
||||
|
||||
if has_equal:
|
||||
return opts
|
||||
|
||||
return [(opt + "=" + value) for opt, value in zip(opts[0::2], opts[1::2])]
|
||||
|
||||
def get_config(self):
|
||||
return self.config
|
||||
|
||||
@property
|
||||
def run_cfg(self):
|
||||
return self.config.run
|
||||
|
||||
@property
|
||||
def datasets_cfg(self):
|
||||
return self.config.datasets
|
||||
|
||||
@property
|
||||
def model_cfg(self):
|
||||
return self.config.model
|
||||
|
||||
def pretty_print(self):
|
||||
logging.info("\n===== Running Parameters =====")
|
||||
logging.info(self._convert_node_to_json(self.config.run))
|
||||
|
||||
logging.info("\n====== Dataset Attributes ======")
|
||||
datasets = self.config.datasets
|
||||
|
||||
for dataset in datasets:
|
||||
if dataset in self.config.datasets:
|
||||
logging.info(f"\n======== {dataset} =======")
|
||||
dataset_config = self.config.datasets[dataset]
|
||||
logging.info(self._convert_node_to_json(dataset_config))
|
||||
else:
|
||||
logging.warning(f"No dataset named '{dataset}' in config. Skipping")
|
||||
|
||||
logging.info(f"\n====== Model Attributes ======")
|
||||
logging.info(self._convert_node_to_json(self.config.model))
|
||||
|
||||
def _convert_node_to_json(self, node):
|
||||
container = OmegaConf.to_container(node, resolve=True)
|
||||
return json.dumps(container, indent=4, sort_keys=True)
|
||||
|
||||
def to_dict(self):
|
||||
return OmegaConf.to_container(self.config)
|
||||
|
||||
|
||||
def node_to_dict(node):
|
||||
return OmegaConf.to_container(node)
|
||||
|
||||
|
||||
class ConfigValidator:
|
||||
"""
|
||||
This is a preliminary implementation to centralize and validate the configuration.
|
||||
May be altered in the future.
|
||||
|
||||
A helper class to validate configurations from yaml file.
|
||||
|
||||
This serves the following purposes:
|
||||
1. Ensure all the options in the yaml are defined, raise error if not.
|
||||
2. when type mismatches are found, the validator will raise an error.
|
||||
3. a central place to store and display helpful messages for supported configurations.
|
||||
|
||||
"""
|
||||
|
||||
class _Argument:
|
||||
def __init__(self, name, choices=None, type=None, help=None):
|
||||
self.name = name
|
||||
self.val = None
|
||||
self.choices = choices
|
||||
self.type = type
|
||||
self.help = help
|
||||
|
||||
def __str__(self):
|
||||
s = f"{self.name}={self.val}"
|
||||
if self.type is not None:
|
||||
s += f", ({self.type})"
|
||||
if self.choices is not None:
|
||||
s += f", choices: {self.choices}"
|
||||
if self.help is not None:
|
||||
s += f", ({self.help})"
|
||||
return s
|
||||
|
||||
def __init__(self, description):
|
||||
self.description = description
|
||||
|
||||
self.arguments = dict()
|
||||
|
||||
self.parsed_args = None
|
||||
|
||||
def __getitem__(self, key):
|
||||
assert self.parsed_args is not None, "No arguments parsed yet."
|
||||
|
||||
return self.parsed_args[key]
|
||||
|
||||
def __str__(self) -> str:
|
||||
return self.format_help()
|
||||
|
||||
def add_argument(self, *args, **kwargs):
|
||||
"""
|
||||
Assume the first argument is the name of the argument.
|
||||
"""
|
||||
self.arguments[args[0]] = self._Argument(*args, **kwargs)
|
||||
|
||||
def validate(self, config=None):
|
||||
"""
|
||||
Convert yaml config (dict-like) to list, required by argparse.
|
||||
"""
|
||||
for k, v in config.items():
|
||||
assert (
|
||||
k in self.arguments
|
||||
), f"""{k} is not a valid argument. Support arguments are {self.format_arguments()}."""
|
||||
|
||||
if self.arguments[k].type is not None:
|
||||
try:
|
||||
self.arguments[k].val = self.arguments[k].type(v)
|
||||
except ValueError:
|
||||
raise ValueError(f"{k} is not a valid {self.arguments[k].type}.")
|
||||
|
||||
if self.arguments[k].choices is not None:
|
||||
assert (
|
||||
v in self.arguments[k].choices
|
||||
), f"""{k} must be one of {self.arguments[k].choices}."""
|
||||
|
||||
return config
|
||||
|
||||
def format_arguments(self):
|
||||
return str([f"{k}" for k in sorted(self.arguments.keys())])
|
||||
|
||||
def format_help(self):
|
||||
# description + key-value pair string for each argument
|
||||
help_msg = str(self.description)
|
||||
return help_msg + ", available arguments: " + self.format_arguments()
|
||||
|
||||
def print_help(self):
|
||||
# display help message
|
||||
print(self.format_help())
|
||||
|
||||
|
||||
def create_runner_config_validator():
|
||||
validator = ConfigValidator(description="Runner configurations")
|
||||
|
||||
validator.add_argument(
|
||||
"runner",
|
||||
type=str,
|
||||
choices=["runner_base", "runner_iter"],
|
||||
help="""Runner to use. The "runner_base" uses epoch-based training while iter-based
|
||||
runner runs based on iters. Default: runner_base""",
|
||||
)
|
||||
# add argumetns for training dataset ratios
|
||||
validator.add_argument(
|
||||
"train_dataset_ratios",
|
||||
type=Dict[str, float],
|
||||
help="""Ratios of training dataset. This is used in iteration-based runner.
|
||||
Do not support for epoch-based runner because how to define an epoch becomes tricky.
|
||||
Default: None""",
|
||||
)
|
||||
validator.add_argument(
|
||||
"max_iters",
|
||||
type=float,
|
||||
help="Maximum number of iterations to run.",
|
||||
)
|
||||
validator.add_argument(
|
||||
"max_epoch",
|
||||
type=int,
|
||||
help="Maximum number of epochs to run.",
|
||||
)
|
||||
# add arguments for iters_per_inner_epoch
|
||||
validator.add_argument(
|
||||
"iters_per_inner_epoch",
|
||||
type=float,
|
||||
help="Number of iterations per inner epoch. This is required when runner is runner_iter.",
|
||||
)
|
||||
lr_scheds_choices = registry.list_lr_schedulers()
|
||||
validator.add_argument(
|
||||
"lr_sched",
|
||||
type=str,
|
||||
choices=lr_scheds_choices,
|
||||
help="Learning rate scheduler to use, from {}".format(lr_scheds_choices),
|
||||
)
|
||||
task_choices = registry.list_tasks()
|
||||
validator.add_argument(
|
||||
"task",
|
||||
type=str,
|
||||
choices=task_choices,
|
||||
help="Task to use, from {}".format(task_choices),
|
||||
)
|
||||
# add arguments for init_lr
|
||||
validator.add_argument(
|
||||
"init_lr",
|
||||
type=float,
|
||||
help="Initial learning rate. This will be the learning rate after warmup and before decay.",
|
||||
)
|
||||
# add arguments for min_lr
|
||||
validator.add_argument(
|
||||
"min_lr",
|
||||
type=float,
|
||||
help="Minimum learning rate (after decay).",
|
||||
)
|
||||
# add arguments for warmup_lr
|
||||
validator.add_argument(
|
||||
"warmup_lr",
|
||||
type=float,
|
||||
help="Starting learning rate for warmup.",
|
||||
)
|
||||
# add arguments for learning rate decay rate
|
||||
validator.add_argument(
|
||||
"lr_decay_rate",
|
||||
type=float,
|
||||
help="Learning rate decay rate. Required if using a decaying learning rate scheduler.",
|
||||
)
|
||||
# add arguments for weight decay
|
||||
validator.add_argument(
|
||||
"weight_decay",
|
||||
type=float,
|
||||
help="Weight decay rate.",
|
||||
)
|
||||
# add arguments for training batch size
|
||||
validator.add_argument(
|
||||
"batch_size_train",
|
||||
type=int,
|
||||
help="Training batch size.",
|
||||
)
|
||||
# add arguments for evaluation batch size
|
||||
validator.add_argument(
|
||||
"batch_size_eval",
|
||||
type=int,
|
||||
help="Evaluation batch size, including validation and testing.",
|
||||
)
|
||||
# add arguments for number of workers for data loading
|
||||
validator.add_argument(
|
||||
"num_workers",
|
||||
help="Number of workers for data loading.",
|
||||
)
|
||||
# add arguments for warm up steps
|
||||
validator.add_argument(
|
||||
"warmup_steps",
|
||||
type=int,
|
||||
help="Number of warmup steps. Required if a warmup schedule is used.",
|
||||
)
|
||||
# add arguments for random seed
|
||||
validator.add_argument(
|
||||
"seed",
|
||||
type=int,
|
||||
help="Random seed.",
|
||||
)
|
||||
# add arguments for output directory
|
||||
validator.add_argument(
|
||||
"output_dir",
|
||||
type=str,
|
||||
help="Output directory to save checkpoints and logs.",
|
||||
)
|
||||
# add arguments for whether only use evaluation
|
||||
validator.add_argument(
|
||||
"evaluate",
|
||||
help="Whether to only evaluate the model. If true, training will not be performed.",
|
||||
)
|
||||
# add arguments for splits used for training, e.g. ["train", "val"]
|
||||
validator.add_argument(
|
||||
"train_splits",
|
||||
type=list,
|
||||
help="Splits to use for training.",
|
||||
)
|
||||
# add arguments for splits used for validation, e.g. ["val"]
|
||||
validator.add_argument(
|
||||
"valid_splits",
|
||||
type=list,
|
||||
help="Splits to use for validation. If not provided, will skip the validation.",
|
||||
)
|
||||
# add arguments for splits used for testing, e.g. ["test"]
|
||||
validator.add_argument(
|
||||
"test_splits",
|
||||
type=list,
|
||||
help="Splits to use for testing. If not provided, will skip the testing.",
|
||||
)
|
||||
# add arguments for accumulating gradient for iterations
|
||||
validator.add_argument(
|
||||
"accum_grad_iters",
|
||||
type=int,
|
||||
help="Number of iterations to accumulate gradient for.",
|
||||
)
|
||||
|
||||
# ====== distributed training ======
|
||||
validator.add_argument(
|
||||
"device",
|
||||
type=str,
|
||||
choices=["cpu", "cuda"],
|
||||
help="Device to use. Support 'cuda' or 'cpu' as for now.",
|
||||
)
|
||||
validator.add_argument(
|
||||
"world_size",
|
||||
type=int,
|
||||
help="Number of processes participating in the job.",
|
||||
)
|
||||
validator.add_argument("dist_url", type=str)
|
||||
validator.add_argument("distributed", type=bool)
|
||||
# add arguments to opt using distributed sampler during evaluation or not
|
||||
validator.add_argument(
|
||||
"use_dist_eval_sampler",
|
||||
type=bool,
|
||||
help="Whether to use distributed sampler during evaluation or not.",
|
||||
)
|
||||
|
||||
# ====== task specific ======
|
||||
# generation task specific arguments
|
||||
# add arguments for maximal length of text output
|
||||
validator.add_argument(
|
||||
"max_len",
|
||||
type=int,
|
||||
help="Maximal length of text output.",
|
||||
)
|
||||
# add arguments for minimal length of text output
|
||||
validator.add_argument(
|
||||
"min_len",
|
||||
type=int,
|
||||
help="Minimal length of text output.",
|
||||
)
|
||||
# add arguments number of beams
|
||||
validator.add_argument(
|
||||
"num_beams",
|
||||
type=int,
|
||||
help="Number of beams used for beam search.",
|
||||
)
|
||||
|
||||
# vqa task specific arguments
|
||||
# add arguments for number of answer candidates
|
||||
validator.add_argument(
|
||||
"num_ans_candidates",
|
||||
type=int,
|
||||
help="""For ALBEF and BLIP, these models first rank answers according to likelihood to select answer candidates.""",
|
||||
)
|
||||
# add arguments for inference method
|
||||
validator.add_argument(
|
||||
"inference_method",
|
||||
type=str,
|
||||
choices=["genearte", "rank"],
|
||||
help="""Inference method to use for question answering. If rank, requires a answer list.""",
|
||||
)
|
||||
|
||||
# ====== model specific ======
|
||||
validator.add_argument(
|
||||
"k_test",
|
||||
type=int,
|
||||
help="Number of top k most similar samples from ITC/VTC selection to be tested.",
|
||||
)
|
||||
|
||||
return validator
|
Loading…
Add table
Add a link
Reference in a new issue