initial commit
This commit is contained in:
commit
a82bbc593e
129 changed files with 33981 additions and 0 deletions
413
tasks/pre_train.py
Normal file
413
tasks/pre_train.py
Normal file
|
@ -0,0 +1,413 @@
|
|||
import os
|
||||
import datetime
|
||||
import wandb
|
||||
import torch
|
||||
import pandas as pd
|
||||
from time import time
|
||||
|
||||
import torch.distributed as dist
|
||||
from torch.distributed import ReduceOp
|
||||
|
||||
from torch.nn.utils.clip_grad import clip_grad_value_
|
||||
from utils.basic import MetricLogger, SmoothedValue, setup_seed, average_dicts
|
||||
from datasets.utils import get_datasets_media
|
||||
from datasets.dataloader import MetaLoader
|
||||
from utils.dist import is_main_process, get_rank, get_world_size
|
||||
from utils.logger import setup_wandb, log_dict_to_wandb
|
||||
from .retrieval_utils import evaluation_wrapper
|
||||
import glog as logger
|
||||
|
||||
|
||||
def run_epoch(
|
||||
model,
|
||||
train_dataloaders,
|
||||
optimizer,
|
||||
epoch,
|
||||
global_step,
|
||||
webvid_step,
|
||||
cc3m_step,
|
||||
device,
|
||||
scheduler,
|
||||
scaler,
|
||||
config
|
||||
):
|
||||
model.train()
|
||||
media_types = list(train_dataloaders.keys())
|
||||
|
||||
log_freq = config['log_freq']
|
||||
# metric_logger = MetricLogger(delimiter=' ')
|
||||
# metric_logger.add_meter('lr', SmoothedValue(window=log_freq, fmt='{value:.6f}'))
|
||||
# metric_logger.add_meter("temperature", SmoothedValue(window=log_freq, fmt="{value:.4f}"))
|
||||
|
||||
loss_names = ['loss_' + k for k in config['loss_dict'].keys()]
|
||||
# for l in loss_names:
|
||||
# for m in media_types:
|
||||
# metric_logger.add_meter(
|
||||
# f'{m}/{l}', SmoothedValue(window=log_freq, fmt="{value:.4f}")
|
||||
# )
|
||||
|
||||
|
||||
# header = '{} | Epoch = {}'.format(config['stage'], epoch)
|
||||
|
||||
model_without_ddp = model
|
||||
if config['distributed']:
|
||||
model_without_ddp = model.module
|
||||
for k in train_dataloaders:
|
||||
train_dataloaders[k].sampler.set_epoch(epoch)
|
||||
|
||||
train_dataloader = MetaLoader(name2loader=train_dataloaders)
|
||||
|
||||
log_text_template = '\n' + '-' * 25 + '\n[Epoch {}/{}][Iter. {}/{}][Media-type {}]\n'
|
||||
log_text_template += '[Losses] mlm (x{}) = {:.4f} | vcc (x{}) = {:.4f} | vcm (x{}) = {:.4f} | stc (x{}) = {:.4f} | stm (x{}) = {:.4f}\n'
|
||||
log_text_template += '[Other] lr = {:.4f} | temp = {:.4f} | eta = {}\n'
|
||||
|
||||
# iterator = metric_logger.log_every(train_dataloader, log_freq, header)
|
||||
local_step = 0
|
||||
for media_type, (vis, caption, neg_vis) in train_dataloader:
|
||||
start = time()
|
||||
# loss_dict = {}
|
||||
vis = vis.to(device)
|
||||
neg_vis = neg_vis.to(device)
|
||||
# idx = idx.to(device)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=config.fp16):
|
||||
loss_dict = model(vis, caption, neg_vis, media_type)
|
||||
# loss_dict.update(losses)
|
||||
loss = sum(loss_dict.values())
|
||||
loss_accum_grad = loss / config.accum_grad_every
|
||||
|
||||
scaler.scale(loss_accum_grad).backward()
|
||||
|
||||
# Perfrom gradient clipping: unscale --> clip
|
||||
if config['clip_grad_value'] > 0:
|
||||
# scaler.unscale_(optimizer)
|
||||
clip_grad_value_(model.parameters(), config.clip_grad_value)
|
||||
|
||||
if local_step % config.accum_grad_every == 0:
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
# scheduler.step(epoch, global_step)
|
||||
scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
time_iter = time() - start
|
||||
eta = (len(train_dataloader) - local_step - 1) * time_iter
|
||||
eta = str(datetime.timedelta(seconds=eta))
|
||||
# log
|
||||
log_dict_webvid = {}
|
||||
log_dict_cc3m = {}
|
||||
log_dict_rest = {}
|
||||
for loss_name in loss_names:
|
||||
value = loss_dict[loss_name]
|
||||
value = value if isinstance(value, float) else value.item()
|
||||
# metric_logger.update(**{f"{media_type}/{loss_name}": value})
|
||||
if media_type == "cc3m":
|
||||
log_dict_cc3m[f"train/{media_type}/{loss_name}"] = value
|
||||
else:
|
||||
log_dict_webvid[f"train/{media_type}/{loss_name}"] = value
|
||||
|
||||
# metric_logger.update(lr=optimizer.param_groups[0]["lr"])
|
||||
# metric_logger.update(temperature=model_without_ddp.temp.item())
|
||||
log_dict_rest['train/other/lr'] = optimizer.param_groups[0]["lr"]
|
||||
log_dict_rest['train/other/temperature'] = model_without_ddp.temp.item()
|
||||
|
||||
if is_main_process() and global_step % log_freq == 0 and local_step % config.accum_grad_every == 0:
|
||||
log_dict_rest['train/other/step'] = global_step
|
||||
if media_type == 'cc3m':
|
||||
log_dict_cc3m['train/cc3m/step'] = cc3m_step
|
||||
|
||||
log_text = log_text_template.format(
|
||||
epoch, config.epochs-1, local_step, len(train_dataloader) , media_type,
|
||||
config.loss_dict['mlm'], log_dict_cc3m['train/cc3m/loss_mlm'],
|
||||
config.loss_dict['vcc'], log_dict_cc3m['train/cc3m/loss_vcc'],
|
||||
config.loss_dict['vcm'], log_dict_cc3m['train/cc3m/loss_vcm'],
|
||||
config.loss_dict['stc'], log_dict_cc3m['train/cc3m/loss_stc'],
|
||||
config.loss_dict['stm'], log_dict_cc3m['train/cc3m/loss_stc'],
|
||||
log_dict_rest['train/other/lr'], log_dict_rest['train/other/temperature'], eta
|
||||
)
|
||||
logger.info(log_text)
|
||||
|
||||
if config['wandb_enabled']:
|
||||
wandb.log(log_dict_rest)
|
||||
wandb.log(log_dict_cc3m)
|
||||
# log_text_template = '[Epoch {}/{}][Iter. {}/{}][Media-type {}]\n'
|
||||
# log_text_template += '[losses: mlm = {:.4f} | vcc = {:4f} | vcm = {:.4f} | stc = {:.4f} | stm = {:.4f}]\n'
|
||||
# log_text_template += '[Other: lr = {:.4f} | temp = {:4f}]\n'
|
||||
|
||||
else:
|
||||
log_dict_webvid['train/webvid/step'] = webvid_step
|
||||
log_text = log_text_template.format(
|
||||
epoch, config.epochs-1, local_step, len(train_dataloader) , media_type,
|
||||
config.loss_dict['mlm'], log_dict_webvid['train/webvid/loss_mlm'],
|
||||
config.loss_dict['vcc'], log_dict_webvid['train/webvid/loss_vcc'],
|
||||
config.loss_dict['vcm'], log_dict_webvid['train/webvid/loss_vcm'],
|
||||
config.loss_dict['stc'], log_dict_webvid['train/webvid/loss_stc'],
|
||||
config.loss_dict['stm'], log_dict_webvid['train/webvid/loss_stm'],
|
||||
log_dict_rest['train/other/lr'], log_dict_rest['train/other/temperature'], eta
|
||||
)
|
||||
logger.info(log_text)
|
||||
|
||||
if config['wandb_enabled']:
|
||||
wandb.log(log_dict_rest)
|
||||
wandb.log(log_dict_webvid)
|
||||
|
||||
|
||||
if media_type == "cc3m":
|
||||
cc3m_step += 1
|
||||
else:
|
||||
webvid_step += 1
|
||||
global_step += 1
|
||||
local_step += 1
|
||||
# gather the stats from all processes
|
||||
# metric_logger.synchronize_between_processes()
|
||||
# logger.info(f"Averaged stats: {metric_logger.global_avg()}")
|
||||
|
||||
return global_step, webvid_step, cc3m_step
|
||||
|
||||
|
||||
def eval(model, val_dataloader, device, epoch, config):
|
||||
|
||||
model.eval()
|
||||
|
||||
log_text_template = '\n' + '-' * 25 + '\n[Val Epoch{}][Iter. {}/{}][Media-type {}]\n'
|
||||
log_text_template += '[Losses] mlm = {:.4f} | vcc = {:.4f} | vcm = {:.4f} | stc = {:.4f} | stm = {:.4f} \n'
|
||||
|
||||
# log_text_template += '[Losses] vcc = {:.4f} | vcm = {:.4f} | stc = {:.4f} | stm = {:.4f} | mlm = {:.4f} \n'
|
||||
# log_text_template += '[Losses] vhc = {:.4f} | vhm = {:.4f} | chc = {:.4f} | chm = {:.4f} | gen = {:.4f} \n'
|
||||
|
||||
cum_loss_stc = 0
|
||||
cum_loss_stm = 0
|
||||
cum_loss_vcc = 0
|
||||
cum_loss_vcm = 0
|
||||
cum_loss_mlm = 0
|
||||
cum_loss_tot = 0
|
||||
val_step = 0
|
||||
|
||||
# val_dataloader = MetaLoader(name2loader=val_dataloaders)
|
||||
media_type = val_dataloader.dataset.medium
|
||||
|
||||
if is_main_process():
|
||||
start_time = time()
|
||||
|
||||
# for vis, cap_ids, hist_ids, ques_ids, label_ids, enc_dec_input_ids, idx, _ in val_dataloader:
|
||||
for vis, caption, neg_vis in val_dataloader:
|
||||
# for vis, cap_ids, hist_ids, label_ids, enc_dec_input_ids, idx, _ in val_dataloader:
|
||||
vis = vis.to(device)
|
||||
neg_vis = neg_vis.to(device)
|
||||
# idx = idx.to(device)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=config['fp16']):
|
||||
with torch.no_grad():
|
||||
# loss_dict, _ = model(vis, cap_ids, hist_ids, ques_ids, label_ids, enc_dec_input_ids, media_type)
|
||||
# loss_dict = model(vis, caption, neg_vis, neg_caption, media_type, file, neg_file)
|
||||
loss_dict = model(vis, caption, neg_vis, media_type)
|
||||
|
||||
loss = sum(loss_dict.values())
|
||||
loss_stc = loss_dict['loss_stc']
|
||||
loss_stm = loss_dict['loss_stm']
|
||||
loss_vcc = loss_dict['loss_vcc']
|
||||
loss_vcm = loss_dict['loss_vcm']
|
||||
loss_mlm = loss_dict['loss_mlm']
|
||||
|
||||
if config['distributed']:
|
||||
dist.all_reduce(loss, op=ReduceOp.AVG)
|
||||
if config.loss_dict['stc'] != 0:
|
||||
dist.all_reduce(loss_stc, op=ReduceOp.AVG)
|
||||
if config.loss_dict['stm'] != 0:
|
||||
dist.all_reduce(loss_stm, op=ReduceOp.AVG)
|
||||
if config.loss_dict['vcc'] != 0:
|
||||
dist.all_reduce(loss_vcc, op=ReduceOp.AVG)
|
||||
if config.loss_dict['vcm'] != 0:
|
||||
dist.all_reduce(loss_vcm, op=ReduceOp.AVG)
|
||||
if config.loss_dict['mlm'] != 0:
|
||||
dist.all_reduce(loss_mlm, op=ReduceOp.AVG)
|
||||
|
||||
if is_main_process():
|
||||
cum_loss_tot += loss.item()
|
||||
cum_loss_stc += loss_stc.item()
|
||||
cum_loss_stm += loss_stm.item()
|
||||
cum_loss_vcc += loss_vcc.item()
|
||||
cum_loss_vcm += loss_vcm.item()
|
||||
cum_loss_mlm += loss_mlm.item()
|
||||
|
||||
if val_step % config.log_freq == 0:
|
||||
log_text = log_text_template.format(
|
||||
epoch, val_step, len(val_dataloader), media_type,
|
||||
loss_mlm, loss_vcc, loss_vcm, loss_stc, loss_stm)
|
||||
# log_text_template = '\n' + '-' * 25 + '\n[Val Eoch{}][Iter. {}/{}][Media-type {}]\n'
|
||||
# log_text_template += '[Losses] vcc = {:.4f} | vcm = {:.4f} | stc = {:.4f} | stm = {:.4f} | mlm = {:.4f} \n'
|
||||
# log_text_template += '[Losses] vhc = {:.4f} | vhm = {:.4f} | chc = {:.4f} | chm = {:.4f} | gen = {:.4f} \n'
|
||||
# log_text = log_text_template.format(
|
||||
# epoch, val_step, len(val_dataloader), media_type,
|
||||
# loss_vcc, loss_vcm, loss_stc, loss_stm, 0,
|
||||
# loss_vhc, loss_vhm, loss_chc, loss_chm, loss_gen
|
||||
# )
|
||||
|
||||
logger.info(log_text)
|
||||
# logger.info('[INFO] [Eval. Epoch {}][Iter. {}/{}][Losses] gen = {:.4f} | total = {:.4f}'.format(
|
||||
# epoch, val_step, len(val_dataloader), gen_loss, loss
|
||||
# ))
|
||||
val_step += 1
|
||||
|
||||
if config['distributed']:
|
||||
dist.barrier()
|
||||
|
||||
if is_main_process():
|
||||
duration = time() - start_time
|
||||
|
||||
cum_loss_tot /= len(val_dataloader)
|
||||
cum_loss_stc /= len(val_dataloader)
|
||||
cum_loss_stm /= len(val_dataloader)
|
||||
cum_loss_vcc /= len(val_dataloader)
|
||||
cum_loss_vcm /= len(val_dataloader)
|
||||
cum_loss_mlm /= len(val_dataloader)
|
||||
|
||||
# cum_loss_vhc /= len(val_dataloader)
|
||||
# cum_loss_vhm /= len(val_dataloader)
|
||||
# cum_loss_chc /= len(val_dataloader)
|
||||
# cum_loss_chm /= len(val_dataloader)
|
||||
# cum_loss_gen /= len(val_dataloader)
|
||||
logger.info('\n' + '-' * 25 + '\n' + 'Eval. took {}\n[Losses] cum_total = {:.4f}'.format(
|
||||
datetime.timedelta(seconds=int(duration)), cum_loss_tot
|
||||
))
|
||||
|
||||
# logger.info('\n' + '-' * 25 + '\n' + 'Eval. took {}\n[Losses] cum_gen = {:.4f} | cum_total = {:.4f}'.format(
|
||||
# datetime.timedelta(seconds=int(duration)), cum_loss_gen, cum_loss_tot
|
||||
# ))
|
||||
|
||||
loss_dict = {
|
||||
'stc': cum_loss_stc,
|
||||
'stm': cum_loss_stm,
|
||||
'vcc': cum_loss_vcc,
|
||||
'vcm': cum_loss_vcm,
|
||||
# 'vhc': cum_loss_vhc,
|
||||
# 'vhm': cum_loss_vhm,
|
||||
# 'chc': cum_loss_chc,
|
||||
# 'chm': cum_loss_chm,
|
||||
'mlm': cum_loss_mlm,
|
||||
# 'gen': cum_loss_gen,
|
||||
'tot': cum_loss_tot
|
||||
}
|
||||
return loss_dict
|
||||
|
||||
|
||||
def pre_train(
|
||||
model,
|
||||
model_without_ddp,
|
||||
train_dataloaders,
|
||||
val_dataloaders,
|
||||
optimizer,
|
||||
global_step,
|
||||
webvid_step,
|
||||
cc3m_step,
|
||||
scheduler,
|
||||
scaler,
|
||||
start_epoch,
|
||||
config
|
||||
):
|
||||
if is_main_process() and config['wandb_enabled']:
|
||||
run = setup_wandb(config)
|
||||
setup_seed(config['seed'] + get_rank())
|
||||
device = torch.device('cuda:{}'.format(config['gpu']))
|
||||
|
||||
if is_main_process() and config['wandb_enabled']:
|
||||
wandb.watch(model)
|
||||
|
||||
best = float('inf')
|
||||
best_epoch = 0
|
||||
|
||||
logger.info('[INFO] Start training...')
|
||||
start_time_all = time()
|
||||
for epoch in range(start_epoch, config['epochs']):
|
||||
if not config['evaluate']:
|
||||
start_time_epoch = time()
|
||||
global_step, webvid_step, cc3m_step = run_epoch(
|
||||
model,
|
||||
train_dataloaders,
|
||||
optimizer,
|
||||
epoch,
|
||||
global_step,
|
||||
webvid_step,
|
||||
cc3m_step,
|
||||
device,
|
||||
scheduler,
|
||||
scaler,
|
||||
config
|
||||
)
|
||||
end_time_epoch = time()
|
||||
epoch_time = end_time_epoch - start_time_epoch
|
||||
epoch_time_str = str(datetime.timedelta(seconds=int(epoch_time)))
|
||||
logger.info(f'[INFO] Epoch took {epoch_time_str}')
|
||||
|
||||
if not config['debugging']:
|
||||
with torch.cuda.amp.autocast(enabled=config['fp16']):
|
||||
# # TODO
|
||||
# eval_res = {}
|
||||
# for val_name, val_loader in val_dataloaders_dict.items():
|
||||
# res = evaluation_wrapper(
|
||||
# model_without_ddp, val_loader, tokenizer, device, config, prefix=val_name
|
||||
# )
|
||||
# eval_res.update(res)
|
||||
val_res = {}
|
||||
|
||||
for medium in val_dataloaders:
|
||||
res = eval(
|
||||
model,
|
||||
val_dataloaders[medium],
|
||||
device,
|
||||
epoch,
|
||||
config
|
||||
)
|
||||
val_res[medium] = res
|
||||
|
||||
if is_main_process():
|
||||
# Average across all datasets
|
||||
avg_val_res = average_dicts(val_res)
|
||||
# log to wandb
|
||||
if config.wandb_enabled:
|
||||
for medium in val_res:
|
||||
log_dict_val = {}
|
||||
# log_dict_val[f'val/{medium}/step'] = epoch
|
||||
for l in val_res[medium]:
|
||||
log_dict_val[f'val/{medium}/{l}'] = val_res[medium][l]
|
||||
wandb.log(log_dict_val)
|
||||
# for p, v in eval_res.items():
|
||||
# log_dict_to_wandb(v, step=global_step, prefix=p)
|
||||
if config.stop_key is not None and config.stop_key in avg_val_res:
|
||||
cur_best = avg_val_res[config.stop_key]
|
||||
else: # stop_key = None
|
||||
cur_best = best - 1 # save the last as the best
|
||||
|
||||
# Don't save vit weights as they are frozen
|
||||
state_dict = model_without_ddp.state_dict()
|
||||
state_dict = {k:v for k,v in state_dict.items() if 'visual_encoder' not in k}
|
||||
|
||||
save_obj = {
|
||||
"model": state_dict,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"scheduler": scheduler.state_dict(),
|
||||
"scaler": scaler.state_dict(),
|
||||
"config": config,
|
||||
"epoch": epoch,
|
||||
"global_step": global_step,
|
||||
}
|
||||
torch.save(save_obj, os.path.join(config.log_dir, f"ckpt_{epoch:02d}.pth"))
|
||||
|
||||
if not config.evaluate and cur_best < best:
|
||||
torch.save(save_obj, os.path.join(config.log_dir, "ckpt_best.pth"))
|
||||
# eval_file = "eval_res_best.json"
|
||||
# eval_res.to_json(os.path.join(config.log_dir, eval_file))
|
||||
best = cur_best
|
||||
|
||||
if config.evaluate:
|
||||
break
|
||||
if config['distributed']:
|
||||
dist.barrier()
|
||||
|
||||
total_time = time() - start_time_all
|
||||
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
||||
logger.info(f'[INFO] Training took {total_time_str}')
|
||||
|
||||
if is_main_process() and config['wandb_enabled']:
|
||||
run.finish()
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue