initial commit

This commit is contained in:
Andreas Bulling 2025-06-24 08:38:09 +02:00
commit a82bbc593e
129 changed files with 33981 additions and 0 deletions

373
tasks/stage_2.py Normal file
View file

@ -0,0 +1,373 @@
import os
import datetime
import wandb
import torch
import pandas as pd
from time import time
import torch.distributed as dist
from torch.distributed import ReduceOp
from torch.nn.utils.clip_grad import clip_grad_value_
from utils.basic import MetricLogger, SmoothedValue, setup_seed, average_dicts
from datasets.utils import get_datasets_media
from datasets.dataloader import MetaLoader
from utils.dist import is_main_process, get_rank, get_world_size
from utils.logger import setup_wandb, log_dict_to_wandb
from .retrieval_utils import evaluation_wrapper
import glog as logger
def run_epoch(
model,
train_dataloaders,
optimizer,
epoch,
global_step,
device,
scheduler,
scaler,
config
):
model.train()
media_types = list(train_dataloaders.keys())
log_freq = config['log_freq']
# metric_logger = MetricLogger(delimiter=' ')
# metric_logger.add_meter('lr', SmoothedValue(window=log_freq, fmt='{value:.6f}'))
# metric_logger.add_meter("temperature", SmoothedValue(window=log_freq, fmt="{value:.4f}"))
loss_names = ['loss_' + k for k in config['loss_dict'].keys()]
# for l in loss_names:
# for m in media_types:
# metric_logger.add_meter(
# f'{m}/{l}', SmoothedValue(window=log_freq, fmt="{value:.4f}")
# )
# header = '{} | Epoch = {}'.format(config['stage'], epoch)
model_without_ddp = model
if config['distributed']:
model_without_ddp = model.module
for k in train_dataloaders:
train_dataloaders[k].sampler.set_epoch(epoch)
train_dataloader = MetaLoader(name2loader=train_dataloaders)
log_text_template = '\n' + '-' * 25 + '\n[Epoch {}/{}][Iter. {}/{}][Media-type {}]\n'
log_text_template += '[Losses] gen = {:.4f} | vhc = {:.4f} | vhm = {:.4f} | stc = {:.4f} | stm = {:.4f}\n'
log_text_template += '[Other] lr = {:.4f} | temp = {:.4f} | iter_time = {:.2f} | eta = {}\n'
# iterator = metric_logger.log_every(train_dataloader, log_freq, header)
local_step = 0
for media_type, (vis, caption, history, answer) in train_dataloader:
# for media_type, (vis, caption, neg_vis, neg_caption, idx) in train_dataloader:
start = time()
# loss_dict = {}
vis = vis.to(device)
# neg_vis = neg_vis.to(device)
# idx = idx.to(device)
with torch.cuda.amp.autocast(enabled=config.fp16):
loss_dict = model(vis, caption, history, answer, media_type)
loss = sum(loss_dict.values())
loss_accum_grad = loss / config.accum_grad_every
scaler.scale(loss_accum_grad).backward()
# Perfrom gradient clipping: unscale --> clip
if config['clip_grad_value'] > 0:
scaler.unscale_(optimizer)
clip_grad_value_(model.parameters(), config.clip_grad_value)
if local_step % config.accum_grad_every == 0:
scaler.step(optimizer)
scaler.update()
scheduler.step()
optimizer.zero_grad()
time_iter = time() - start
eta = (len(train_dataloader) - local_step - 1) * time_iter
eta = str(datetime.timedelta(seconds=eta))
# log
log_dict = {}
log_dict_rest = {}
for loss_name in loss_names:
value = loss_dict[loss_name]
value = value if isinstance(value, float) else value.item()
log_dict[f"train/{media_type}/{loss_name}"] = value
# metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# metric_logger.update(temperature=model_without_ddp.temp.item())
log_dict_rest['train/other/lr'] = optimizer.param_groups[0]["lr"]
log_dict_rest['train/other/temperature'] = model_without_ddp.temp.item()
if is_main_process() and global_step % log_freq == 0 and local_step % config.accum_grad_every == 0:
# log_dict['train/webvid/step'] = webvid_step
log_text = log_text_template.format(
epoch, config.epochs-1, local_step, len(train_dataloader) , media_type,
log_dict['train/champagne/loss_gen'], log_dict['train/champagne/loss_vhc'], log_dict['train/champagne/loss_vhm'],
log_dict['train/champagne/loss_stc'], log_dict['train/champagne/loss_stm'],
log_dict_rest['train/other/lr'], log_dict_rest['train/other/temperature'], time_iter, eta
)
logger.info(log_text)
log_dict_rest['train/other/step'] = global_step
log_dict['train/champagne/step'] = global_step
if config['wandb_enabled']:
wandb.log(log_dict)
wandb.log(log_dict_rest)
global_step += 1
local_step += 1
# gather the stats from all processes
# metric_logger.synchronize_between_processes()
# logger.info(f"Averaged stats: {metric_logger.global_avg()}")
return global_step
def eval(model, val_dataloader, device, epoch, config):
model.eval()
log_text_template = '\n' + '-' * 25 + '\n[Val Epoch{}][Iter. {}/{}][Media-type {}]\n'
log_text_template += '[Losses] gen = {:.4f} | vhc = {:.4f} | vhm = {:.4f} | stc = {:.4f} | stm = {:.4f} \n'
# log_text_template += '[Losses] vcc = {:.4f} | vcm = {:.4f} | stc = {:.4f} | stm = {:.4f} | mlm = {:.4f} \n'
# log_text_template += '[Losses] vhc = {:.4f} | vhm = {:.4f} | chc = {:.4f} | chm = {:.4f} | gen = {:.4f} \n'
cum_loss_stc = 0
cum_loss_stm = 0
cum_loss_vhc = 0
cum_loss_vhm = 0
cum_loss_gen = 0
cum_loss_tot = 0
val_step = 0
# val_dataloader = MetaLoader(name2loader=val_dataloaders)
media_type = val_dataloader.dataset.medium
if is_main_process():
start_time = time()
# for vis, cap_ids, hist_ids, ques_ids, label_ids, enc_dec_input_ids, idx, _ in val_dataloader:
for vis, caption, history, answer in val_dataloader:
# for vis, cap_ids, hist_ids, label_ids, enc_dec_input_ids, idx, _ in val_dataloader:
vis = vis.to(device)
# neg_vis = neg_vis.to(device)
# idx = idx.to(device)
with torch.cuda.amp.autocast(enabled=config['fp16']):
with torch.no_grad():
# loss_dict, _ = model(vis, cap_ids, hist_ids, ques_ids, label_ids, enc_dec_input_ids, media_type)
loss_dict = model(vis, caption, history, answer, media_type)
loss = sum(loss_dict.values())
loss_stc = loss_dict['loss_stc']
loss_stm = loss_dict['loss_stm']
loss_vhc = loss_dict['loss_vhc']
loss_vhm = loss_dict['loss_vhm']
loss_gen = loss_dict['loss_gen']
if config['distributed']:
dist.all_reduce(loss, op=ReduceOp.AVG)
if config.loss_dict['stc'] != 0:
dist.all_reduce(loss_stc, op=ReduceOp.AVG)
if config.loss_dict['stm'] != 0:
dist.all_reduce(loss_stm, op=ReduceOp.AVG)
if config.loss_dict['vhc'] != 0:
dist.all_reduce(loss_vhc, op=ReduceOp.AVG)
if config.loss_dict['vhm'] != 0:
dist.all_reduce(loss_vhm, op=ReduceOp.AVG)
if config.loss_dict['gen'] != 0:
dist.all_reduce(loss_gen, op=ReduceOp.AVG)
if is_main_process():
cum_loss_tot += loss.item()
cum_loss_stc += loss_stc.item()
cum_loss_stm += loss_stm.item()
cum_loss_vhc += loss_vhc.item()
cum_loss_vhm += loss_vhm.item()
cum_loss_gen += loss_gen.item()
if val_step % config.log_freq == 0:
log_text = log_text_template.format(
epoch, val_step, len(val_dataloader), media_type,
loss_gen, loss_vhc, loss_vhm, loss_stc, loss_stm)
# log_text_template = '\n' + '-' * 25 + '\n[Val Eoch{}][Iter. {}/{}][Media-type {}]\n'
# log_text_template += '[Losses] vcc = {:.4f} | vcm = {:.4f} | stc = {:.4f} | stm = {:.4f} | mlm = {:.4f} \n'
# log_text_template += '[Losses] vhc = {:.4f} | vhm = {:.4f} | chc = {:.4f} | chm = {:.4f} | gen = {:.4f} \n'
# log_text = log_text_template.format(
# epoch, val_step, len(val_dataloader), media_type,
# loss_vcc, loss_vcm, loss_stc, loss_stm, 0,
# loss_vhc, loss_vhm, loss_chc, loss_chm, loss_gen
# )
logger.info(log_text)
# logger.info('[INFO] [Eval. Epoch {}][Iter. {}/{}][Losses] gen = {:.4f} | total = {:.4f}'.format(
# epoch, val_step, len(val_dataloader), gen_loss, loss
# ))
val_step += 1
if config['distributed']:
dist.barrier()
if is_main_process():
duration = time() - start_time
cum_loss_tot /= len(val_dataloader)
cum_loss_stc /= len(val_dataloader)
cum_loss_stm /= len(val_dataloader)
cum_loss_vhc /= len(val_dataloader)
cum_loss_vhm /= len(val_dataloader)
cum_loss_gen /= len(val_dataloader)
# cum_loss_vhc /= len(val_dataloader)
# cum_loss_vhm /= len(val_dataloader)
# cum_loss_chc /= len(val_dataloader)
# cum_loss_chm /= len(val_dataloader)
# cum_loss_gen /= len(val_dataloader)
logger.info('\n' + '-' * 25 + '\n' + 'Eval. took {}\n[Losses] cum_total = {:.4f}'.format(
datetime.timedelta(seconds=int(duration)), cum_loss_tot
))
# logger.info('\n' + '-' * 25 + '\n' + 'Eval. took {}\n[Losses] cum_gen = {:.4f} | cum_total = {:.4f}'.format(
# datetime.timedelta(seconds=int(duration)), cum_loss_gen, cum_loss_tot
# ))
# switch back to training mode
model.train()
loss_dict = {
'stc': cum_loss_stc,
'stm': cum_loss_stm,
'vhc': cum_loss_vhc,
'vhm': cum_loss_vhm,
# 'vhc': cum_loss_vhc,
# 'vhm': cum_loss_vhm,
# 'chc': cum_loss_chc,
# 'chm': cum_loss_chm,
'gen': cum_loss_gen,
# 'gen': cum_loss_gen,
'tot': cum_loss_tot
}
return loss_dict
def train(
model,
model_without_ddp,
train_dataloaders,
val_dataloaders,
optimizer,
global_step,
scheduler,
scaler,
start_epoch,
config
):
if is_main_process() and config['wandb_enabled']:
run = setup_wandb(config)
setup_seed(config['seed'] + get_rank())
device = torch.device('cuda:{}'.format(config['gpu']))
if is_main_process() and config['wandb_enabled']:
wandb.watch(model)
best = float('inf')
best_epoch = 0
logger.info('[INFO] Start training...')
start_time_all = time()
for epoch in range(start_epoch, config['epochs']):
if not config['evaluate']:
start_time_epoch = time()
global_step = run_epoch(
model,
train_dataloaders,
optimizer,
epoch,
global_step,
device,
scheduler,
scaler,
config
)
end_time_epoch = time()
epoch_time = end_time_epoch - start_time_epoch
epoch_time_str = str(datetime.timedelta(seconds=int(epoch_time)))
logger.info(f'[INFO] Epoch took {epoch_time_str}')
if not config['debugging']:
with torch.cuda.amp.autocast(enabled=config['fp16']):
val_res = {}
for medium in val_dataloaders:
res = eval(
model,
val_dataloaders[medium],
device,
epoch,
config
)
val_res[medium] = res
if is_main_process():
# Average across all datasets
avg_val_res = average_dicts(val_res)
# log to wandb
if config.wandb_enabled:
for medium in val_res:
log_dict_val = {}
# log_dict_val[f'val/{medium}/step'] = epoch
for l in val_res[medium]:
log_dict_val[f'val/{medium}/{l}'] = val_res[medium][l]
wandb.log(log_dict_val)
# for p, v in eval_res.items():
# log_dict_to_wandb(v, step=global_step, prefix=p)
if config.stop_key is not None and config.stop_key in avg_val_res:
cur_best = avg_val_res[config.stop_key]
else: # stop_key = None
cur_best = best - 1 # save the last as the best
# Don't save vit and llm weights as they are frozen
state_dict = model_without_ddp.state_dict()
if config.freeze_vit:
state_dict = {k:v for k,v in state_dict.items() if 'visual_encoder' not in k}
if config.freeze_llm:
state_dict = {k:v for k,v in state_dict.items() if 'llm' not in k}
save_obj = {
"model": state_dict,
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"scaler": scaler.state_dict(),
"config": config,
"epoch": epoch,
"global_step": global_step,
}
torch.save(save_obj, os.path.join(config.log_dir, f"ckpt_{epoch:02d}.pth"))
if not config.evaluate and cur_best < best:
torch.save(save_obj, os.path.join(config.log_dir, "ckpt_best.pth"))
# eval_file = "eval_res_best.json"
# eval_res.to_json(os.path.join(config.log_dir, eval_file))
best = cur_best
if config.evaluate:
break
if config['distributed']:
dist.barrier()
total_time = time() - start_time_all
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info(f'[INFO] Training took {total_time_str}')
if is_main_process() and config['wandb_enabled']:
run.finish()