""" A Metric observes output of certain model, for example, in form of logits or scores, and accumulates a particular metric with reference to some provided targets. In context of VisDial, we use Recall (@ 1, 5, 10), Mean Rank, Mean Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG). Each ``Metric`` must atleast implement three methods: - ``observe``, update accumulated metric with currently observed outputs and targets. - ``retrieve`` to return the accumulated metric., an optionally reset internally accumulated metric (this is commonly done between two epochs after validation). - ``reset`` to explicitly reset the internally accumulated metric. Caveat, if you wish to implement your own class of Metric, make sure you call ``detach`` on output tensors (like logits), else it will cause memory leaks. """ import torch def scores_to_ranks(scores: torch.Tensor): """Convert model output scores into ranks.""" batch_size, num_rounds, num_options = scores.size() scores = scores.view(-1, num_options) # sort in descending order - largest score gets highest rank sorted_ranks, ranked_idx = scores.sort(1, descending=True) # i-th position in ranked_idx specifies which score shall take this # position but we want i-th position to have rank of score at that # position, do this conversion ranks = ranked_idx.clone().fill_(0) for i in range(ranked_idx.size(0)): for j in range(num_options): ranks[i][ranked_idx[i][j]] = j # convert from 0-99 ranks to 1-100 ranks ranks += 1 ranks = ranks.view(batch_size, num_rounds, num_options) return ranks class SparseGTMetrics(object): """ A class to accumulate all metrics with sparse ground truth annotations. These include Recall (@ 1, 5, 10), Mean Rank and Mean Reciprocal Rank. """ def __init__(self): self._rank_list = [] def observe( self, predicted_scores: torch.Tensor, target_ranks: torch.Tensor ): predicted_scores = predicted_scores.detach() # shape: (batch_size, num_rounds, num_options) predicted_ranks = scores_to_ranks(predicted_scores) batch_size, num_rounds, num_options = predicted_ranks.size() # collapse batch dimension predicted_ranks = predicted_ranks.view( batch_size * num_rounds, num_options ) # shape: (batch_size * num_rounds, ) target_ranks = target_ranks.view(batch_size * num_rounds).long() # shape: (batch_size * num_rounds, ) predicted_gt_ranks = predicted_ranks[ torch.arange(batch_size * num_rounds), target_ranks ] self._rank_list.extend(list(predicted_gt_ranks.cpu().numpy())) def retrieve(self, reset: bool = True): num_examples = len(self._rank_list) if num_examples > 0: # convert to numpy array for easy calculation. __rank_list = torch.tensor(self._rank_list).float() metrics = { "r@1": torch.mean((__rank_list <= 1).float()).item(), "r@5": torch.mean((__rank_list <= 5).float()).item(), "r@10": torch.mean((__rank_list <= 10).float()).item(), "mean": torch.mean(__rank_list).item(), "mrr": torch.mean(__rank_list.reciprocal()).item(), } else: metrics = {} if reset: self.reset() return metrics def reset(self): self._rank_list = [] class NDCG(object): def __init__(self): self._ndcg_numerator = 0.0 self._ndcg_denominator = 0.0 def observe( self, predicted_scores: torch.Tensor, target_relevance: torch.Tensor ): """ Observe model output scores and target ground truth relevance and accumulate NDCG metric. Parameters ---------- predicted_scores: torch.Tensor A tensor of shape (batch_size, num_options), because dense annotations are available for 1 randomly picked round out of 10. target_relevance: torch.Tensor A tensor of shape same as predicted scores, indicating ground truth relevance of each answer option for a particular round. """ predicted_scores = predicted_scores.detach() # shape: (batch_size, 1, num_options) predicted_scores = predicted_scores.unsqueeze(1) predicted_ranks = scores_to_ranks(predicted_scores) # shape: (batch_size, num_options) predicted_ranks = predicted_ranks.squeeze(1) batch_size, num_options = predicted_ranks.size() k = torch.sum(target_relevance != 0, dim=-1) # shape: (batch_size, num_options) _, rankings = torch.sort(predicted_ranks, dim=-1) # Sort relevance in descending order so highest relevance gets top rnk. _, best_rankings = torch.sort( target_relevance, dim=-1, descending=True ) # shape: (batch_size, ) batch_ndcg = [] for batch_index in range(batch_size): num_relevant = k[batch_index] dcg = self._dcg( rankings[batch_index][:num_relevant], target_relevance[batch_index], ) best_dcg = self._dcg( best_rankings[batch_index][:num_relevant], target_relevance[batch_index], ) batch_ndcg.append(dcg / best_dcg) self._ndcg_denominator += batch_size self._ndcg_numerator += sum(batch_ndcg) def _dcg(self, rankings: torch.Tensor, relevance: torch.Tensor): sorted_relevance = relevance[rankings].cpu().float() discounts = torch.log2(torch.arange(len(rankings)).float() + 2) return torch.sum(sorted_relevance / discounts, dim=-1) def retrieve(self, reset: bool = True): if self._ndcg_denominator > 0: metrics = { "ndcg": float(self._ndcg_numerator / self._ndcg_denominator) } else: metrics = {} if reset: self.reset() return metrics def reset(self): self._ndcg_numerator = 0.0 self._ndcg_denominator = 0.0