import torch import torch.nn as nn from transformers.models.llama.modeling_llama import LlamaRMSNorm from timm.models.layers import DropPath class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, mask=None): B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = ( qkv[0], qkv[1], qkv[2], ) # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale if mask is not None: if mask.dim() != x.dim(): expanded_mask = mask[:, None, None, :].expand(B, 1, N, N) else: expanded_mask = mask expanded_mask = expanded_mask.bool() attn = attn.masked_fill(~expanded_mask, float("-inf")) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x, attn class MoELayer(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.SiLU, norm_layer=LlamaRMSNorm, ): super().__init__() self.norm_att = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() # EXPERT CONSTRUCTION mlp_hidden_dim = int(dim * mlp_ratio) # Spatial expert self.norm_spatial = norm_layer(dim) self.mlp_spatial = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) # Temporal expert self.norm_temp = norm_layer(dim) self.mlp_temp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) # Vis expert self.norm_vis = norm_layer(dim) self.mlp_vis = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) # caption expert self.norm_cap = norm_layer(dim) self.mlp_cap = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) # history expert self.norm_hist = norm_layer(dim) self.mlp_hist = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) # Fusion expert self.norm_fusion = norm_layer(dim) self.mlp_fusion = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) # expert_flag:{Only Text : 00 , Only Image : 01, Fusion : 10, Text & Image : 11} (BINARY) # expert_flag: # 0: def forward(self, x, special_toks_indices, expert_flag, mask=None): x_shortcut, attn = self.attn(self.norm_att(x), mask=mask) x = x + self.drop_path(x_shortcut) bs, h_dim = x.size(0), x.size(-1) device = x.device if expert_flag == 'modalities': end_index = special_toks_indices.get('', special_toks_indices['']) spatial_feats = x[:, special_toks_indices['']: end_index, :] spatial_feats = spatial_feats + self.drop_path(self.mlp_spatial(self.norm_spatial(spatial_feats))) spatial_index = torch.arange(special_toks_indices[''], end_index, device=device) spatial_index = spatial_index.unsqueeze(0).unsqueeze(-1) spatial_index = spatial_index.repeat(bs, 1, h_dim) x = x.scatter(1, spatial_index, spatial_feats) # x[:, special_toks_indices['']: special_toks_indices[''], :] = spatial_feats end_index = special_toks_indices.get('', special_toks_indices['']) caption_feats = x[:, special_toks_indices['']: end_index, :] caption_feats = caption_feats + self.drop_path(self.mlp_cap(self.norm_cap(caption_feats))) caption_index = torch.arange(special_toks_indices[''], end_index, device=device) caption_index = caption_index.unsqueeze(0).unsqueeze(-1) caption_index = caption_index.repeat(bs, 1, h_dim) x = x.scatter(1, caption_index, caption_feats) # x[:, special_toks_indices['']: special_toks_indices[''], :] = caption_feats if '' in special_toks_indices: temporal_feats = x[:, special_toks_indices['']: special_toks_indices[''], :] temporal_feats = temporal_feats + self.drop_path(self.mlp_temp(self.norm_temp(temporal_feats))) temporal_index = torch.arange(special_toks_indices[''], special_toks_indices[''], device=device) temporal_index = temporal_index.unsqueeze(0).unsqueeze(-1) temporal_index = temporal_index.repeat(bs, 1, h_dim) x = x.scatter(1, temporal_index, temporal_feats) # x[:, special_toks_indices['']: special_toks_indices[''], :] = temporal_feats vis_feats = x[:, special_toks_indices['']: special_toks_indices[''], :] vis_feats = vis_feats + self.drop_path(self.mlp_vis(self.norm_vis(vis_feats))) vis_index = torch.arange(special_toks_indices[''], special_toks_indices[''], device=device) vis_index = vis_index.unsqueeze(0).unsqueeze(-1) vis_index = vis_index.repeat(bs, 1, h_dim) x = x.scatter(1, vis_index, vis_feats) # x[:, special_toks_indices['']: special_toks_indices[''], :] = vis_feats if '' in special_toks_indices: history_feats = x[:, special_toks_indices['']: special_toks_indices[''], :] history_feats = history_feats + self.drop_path(self.mlp_hist(self.norm_hist(history_feats))) history_index = torch.arange(special_toks_indices[''], special_toks_indices[''], device=device) history_index = history_index.unsqueeze(0).unsqueeze(-1) history_index = history_index.repeat(bs, 1, h_dim) x = x.scatter(1, history_index, history_feats) elif expert_flag == 'fusion': x = x + self.drop_path(self.mlp_fusion(self.norm_fusion(x))) return x, attn # if expert_flag == 2: # x = x + self.drop_path(self.mlp(self.norm2(x))) # elif expert_flag == 0: # x = (x[:, -it_split:]) # x = x + self.drop_path(self.sentence_mlp(self.sentence_norm(x))) # elif expert_flag == 1: # x = (x[:, :-it_split ]) # x = x + self.drop_path(self.image_mlp(self.image_norm(x))) # elif expert_flag == 3: # text, image = (x[:, :it_split], x[:, it_split:],) # text = text + self.drop_path(self.sentence_mlp(self.sentence_norm(text))) # image = image + self.drop_path(self.image_mlp(self.image_norm(image))) # x = torch.cat([text, image], dim=1) # elif expert_flag == 4: # x = x + self.drop_path(self.generation_mlp(self.generation_norm(x))) # return x, attn