V2Dial/main_stage_3.py
2025-06-24 08:38:09 +02:00

185 lines
5.6 KiB
Python

import argparse
import torch
import torch.multiprocessing as mp
import torch.nn as nn
import torch.distributed as dist
# from transformers import BartTokenizer
from torch.utils.data import ConcatDataset
from utils.init import initialize_from_env
# from datasets.pretraining import load_datasets, VideoTextRetDataset
# from datasets.utils import get_datasets_media
from models.setup import setup_model, setup_data, setup_data_test
# from tasks.ft_avsd import ft_avsd, generate
from tasks.stage_3 import ft_avsd, generate, generate_nextqa, generate_visdial
parser = argparse.ArgumentParser(description='Main script for v2dial')
parser.add_argument(
'--model',
type=str,
default='v2dial/stage_3',
help='model name to train or test')
parser.add_argument(
'--mode',
type=str,
default='generate',
help='train, generate or debug'
)
parser.add_argument(
'--eval_dir',
type=str,
default='/pfss/mlde/workspaces/mlde_wsp_Rohrbach/users/ma35vahy/V2Dial_new_v2/logs/stage_3/v2dial-google_flan-t5-large-finetune_without_stc_stm_only_visdial'
)
parser.add_argument(
'--wandb_mode',
type=str,
default='online',
choices=['online', 'offline', 'disabled', 'run', 'dryrun']
)
parser.add_argument(
'--wandb_project',
type=str,
default='V2Dial'
)
parser.add_argument(
'--tag',
type=str,
default="finetuned_visdial_without_stm_stc",
# default='V2dial-bart_large-Experts_from_scratch-gen-modalityLayers_4-without_residuals-AVSD',
# default='Q_base_bart_base_from_modality_experts_c3m_webvid2mToVisdialToAVSD_num_hist3_with_fc_embed',
# default='like_mst_mixer_Q_base_bart_large_from_modality_experts_c3m_webvid2mToavsd_12_frames_without_temp_fp16',
# default='from_stage1_after_avsd_only_visdial_4_frames_10_rounds_ft',
# default='from_scratch_visdial',
# default='no_moes_div_st_from_scratch_only_avsd_4_frames_3_rounds_ft_fp16',
# default='flant5_large_bert_experts_4_only_gen_AVSD_24epochs',
help="Tag to differentiate the models"
)
# parser.add_argument(
# '--medium',
# type=str,
# default='avsd',
# help="Medium of the test dataset"
# )
parser.add_argument(
'--start_idx_gen',
type=int,
default=0,
help="The start index for generation"
)
parser.add_argument(
'--end_idx_gen',
type=int,
default=10,
help="The end index for generation"
)
parser.add_argument(
'--gen_subset_num',
type=int,
default=1,
help="The index of the test split for generation"
)
parser.add_argument('--ssh', action='store_true',
help='whether or not we are executing command via ssh. '
'If set to True, we will not log.info anything to screen and only redirect them to log file')
def main(gpu, config, args):
config['gpu'] = gpu
if config['distributed']:
dist.init_process_group(
backend='nccl',
world_size=config['num_gpus'],
rank=gpu
)
torch.cuda.set_device(gpu)
device = torch.device(f'cuda:{gpu}')
if config.use_cpu:
device = torch.device('cpu')
config['device'] = device
# model = V2Dial(config)
# config['num_training_steps'] = num_step_per_epoch * config['epochs']
# config['num_warmup_steps'] = num_step_per_epoch * config['warmup_epochs']
if config['training']:
train_dataloaders, val_dataloaders = setup_data(config)
(
model, model_without_ddp, optimizer, scheduler, scaler, start_epoch, global_step, visdial_step, avsd_step, nextqa_step, config
) = setup_model(config)
if config['training']:
ft_avsd(
model,
model_without_ddp,
train_dataloaders,
val_dataloaders,
optimizer,
global_step,
visdial_step,
avsd_step,
nextqa_step,
scheduler,
scaler,
start_epoch,
config
)
elif config['generating']:
test_dataloader = setup_data_test(config)
if config.media_test == 'avsd':
generate(model, test_dataloader, args.tag, config, gen_subset_num=args.gen_subset_num)
if config.media_test == 'visdial':
generate_visdial(model, test_dataloader, args.tag, config, gen_subset_num=args.gen_subset_num)
elif config.media_test == 'nextqa':
generate_nextqa(model, test_dataloader, args.tag, config, gen_subset_num=args.gen_subset_num)
if config['distributed']:
dist.destroy_process_group()
if __name__ == '__main__':
args = parser.parse_args()
# initialization
model, stage = args.model.split('/')
config = initialize_from_env(model, args.mode, stage, args.eval_dir, tag=args.tag)
config['wandb_enabled'] = args.wandb_mode == 'online'
config['training'] = args.mode == 'train'
config['generating'] = args.mode == 'generate'
config['debugging'] = args.mode == 'debug'
config['wandb_mode'] = args.wandb_mode
# config['medium'] = args.medium
config['start_idx_gen'] = args.start_idx_gen
config['end_idx_gen'] = args.end_idx_gen
config['expert_permutation'] = None
# config['expert_permutation'] = {
# 'spatial': 'history',
# 'temporal': 'temporal',
# 'caption': 'caption',
# 'history': 'spatial'
# }
# config['wandb_project']
# if config['accelerator'] == 'ddp':
if config['num_gpus'] > 1:
config['distributed'] = True
mp.spawn(main, nprocs=config['num_gpus'], args=(config, args))
else:
config['distributed'] = False
main(0, config, args)