V2Dial/models/backbones/beit/st_beit.py
2025-06-24 08:38:09 +02:00

1752 lines
70 KiB
Python

# coding=utf-8
# Copyright 2021 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BEiT model."""
import collections.abc
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import einops
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.nn import functional as F
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import (BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
MaskedLMOutput,
SemanticSegmenterOutput)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import (find_pruneable_heads_and_indices,
prune_linear_layer)
from transformers.utils import (add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward, logging,
replace_return_docstrings)
from models.utils import interpolate_temporal_pos_embed
from ...modules.temporal_modelling import (X_CLIP, STAdapter, TemporalAttention,
TemporalS4, WindowTemporalAttention)
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "BeitConfig"
_FEAT_EXTRACTOR_FOR_DOC = "BeitFeatureExtractor"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224-pt22k"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/beit-base-patch16-224",
# See all BEiT models at https://huggingface.co/models?filter=beit
]
class BeitConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the BEiT
[microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture.
Args:
vocab_size (`int`, *optional*, defaults to 8092):
Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during
pre-training.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
use_mask_token (`bool`, *optional*, defaults to `False`):
Whether to use a mask token for masked image modeling.
use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`):
Whether to use BERT-style absolute position embeddings.
use_relative_position_bias (`bool`, *optional*, defaults to `False`):
Whether to use T5-style relative position embeddings in the self-attention layers.
use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`):
Whether to use the same relative position embeddings across all self-attention layers of the Transformer.
layer_scale_init_value (`float`, *optional*, defaults to 0.1):
Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate per sample (when applied in the main path of residual layers).
use_mean_pooling (`bool`, *optional*, defaults to `True`):
Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the
CLS token, before applying the classification head.
out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`):
Indices of the feature maps to use for semantic segmentation.
pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`):
Pooling scales used in Pooling Pyramid Module applied on the last feature map.
use_auxiliary_head (`bool`, *optional*, defaults to `True`):
Whether to use an auxiliary head during training.
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
Weight of the cross-entropy loss of the auxiliary head.
auxiliary_channels (`int`, *optional*, defaults to 256):
Number of channels to use in the auxiliary head.
auxiliary_num_convs (`int`, *optional*, defaults to 1):
Number of convolutional layers to use in the auxiliary head.
auxiliary_concat_input (`bool`, *optional*, defaults to `False`):
Whether to concatenate the output of the auxiliary head with the input before the classification layer.
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
The index that is ignored by the loss function of the semantic segmentation model.
Example:
```python
>>> from transformers import BeitModel, BeitConfig
>>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration
>>> configuration = BeitConfig()
>>> # Initializing a model from the beit-base-patch16-224-pt22k style configuration
>>> model = BeitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "beit"
def __init__(
self,
vocab_size=8192,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
is_encoder_decoder=False,
image_size=224,
num_frames=1,
patch_size=16,
num_channels=3,
use_mask_token=False,
use_absolute_position_embeddings=False,
use_relative_position_bias=False,
use_shared_relative_position_bias=False,
layer_scale_init_value=0.1,
drop_path_rate=0.1,
use_mean_pooling=True,
out_indices=[3, 5, 7, 11],
pool_scales=[1, 2, 3, 6],
use_auxiliary_head=True,
auxiliary_loss_weight=0.4,
auxiliary_channels=256,
auxiliary_num_convs=1,
auxiliary_concat_input=False,
semantic_loss_ignore_index=255,
temporal_model_block="none",
temporal_model_position="last",
temporal_model_init_value=0.0,
temporal_model_config={},
use_temporal_position_embedding=False,
add_k_prompts=0,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.use_mask_token = use_mask_token
self.use_absolute_position_embeddings = use_absolute_position_embeddings
self.use_relative_position_bias = use_relative_position_bias
self.use_shared_relative_position_bias = use_shared_relative_position_bias
self.layer_scale_init_value = layer_scale_init_value
self.drop_path_rate = drop_path_rate
self.use_mean_pooling = use_mean_pooling
# decode head attributes (semantic segmentation)
self.out_indices = out_indices
self.pool_scales = pool_scales
# auxiliary head attributes (semantic segmentation)
self.use_auxiliary_head = use_auxiliary_head
self.auxiliary_loss_weight = auxiliary_loss_weight
self.auxiliary_channels = auxiliary_channels
self.auxiliary_num_convs = auxiliary_num_convs
self.auxiliary_concat_input = auxiliary_concat_input
self.semantic_loss_ignore_index = semantic_loss_ignore_index
self.temporal_model_block = temporal_model_block
self.temporal_model_config = temporal_model_config
self.temporal_model_position = temporal_model_position
self.temporal_model_init_value = temporal_model_init_value
self.use_temporal_position_embedding = use_temporal_position_embedding
self.add_k_prompts = add_k_prompts
self.num_frames = num_frames
@dataclass
class BeitModelOutputWithPooling(BaseModelOutputWithPooling):
"""
Class for outputs of [`BeitModel`].
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
def drop_path(
input: torch.Tensor, drop_prob: float = 0.0, training: bool = False
) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (
input.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
class BeitDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class BeitEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
if config.use_mask_token:
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
else:
self.mask_token = None
self.patch_embeddings = BeitPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
if config.use_absolute_position_embeddings:
self.position_embeddings = nn.Parameter(
torch.zeros(1, num_patches + 1, config.hidden_size)
)
else:
self.position_embeddings = None
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if config.use_temporal_position_embedding:
self.temporal_position_embeddings = nn.parameter.Parameter(
torch.zeros(1, config.num_frames, 1, config.hidden_size)
)
else:
self.temporal_position_embeddings = None
if config.add_k_prompts > 0:
self.prompt_tokens = nn.parameter.Parameter(
torch.zeros(1, config.add_k_prompts, config.hidden_size)
)
else:
self.prompt_tokens = None
def forward(
self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None
) -> torch.Tensor:
"""
Args:
pixel_values (torch.Tensor): The input image patches. Shape: [B, T, C, H, W].
"""
t = pixel_values.shape[1]
pixel_values = einops.rearrange(pixel_values, "b t c h w -> (b t) c h w")
embeddings = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.size() # [(b t) l c]
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1 - w) + mask_tokens * w
if self.prompt_tokens is not None:
prompt_tokens = self.prompt_tokens.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings, prompt_tokens), dim=1)
else:
embeddings = torch.cat((cls_tokens, embeddings), dim=1) # [B*T, L, C]
if self.position_embeddings is not None:
embeddings = embeddings + self.position_embeddings
embeddings = einops.rearrange(embeddings, "(b t) l c -> b t l c", t=t)
if self.temporal_position_embeddings is not None:
if t <= self.temporal_position_embeddings.shape[1]:
embeddings = embeddings + self.temporal_position_embeddings[:, :t]
else:
tpe = interpolate_temporal_pos_embed(self.temporal_position_embeddings, t)
embeddings = embeddings + tpe
embeddings = self.dropout(embeddings)
return embeddings
class BeitPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = (
image_size
if isinstance(image_size, collections.abc.Iterable)
else (image_size, image_size)
)
patch_size = (
patch_size
if isinstance(patch_size, collections.abc.Iterable)
else (patch_size, patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv2d(
num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
return embeddings
class BeitSelfAttention(nn.Module):
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
config, "embedding_size"
):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
if window_size:
self.relative_position_bias = BeitRelativePositionBias(
config, window_size=window_size
)
else:
self.relative_position_bias = None
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Add relative position bias if present.
if self.relative_position_bias is not None:
attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0)
# Add shared relative position bias if provided.
if relative_position_bias is not None:
attention_scores = attention_scores + relative_position_bias
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class BeitSelfOutput(nn.Module):
"""
The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None
) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BeitAttention(nn.Module):
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
self.attention = BeitSelfAttention(config, window_size=window_size)
self.output = BeitSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads,
self.attention.num_attention_heads,
self.attention.attention_head_size,
self.pruned_heads,
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = (
self.attention.attention_head_size * self.attention.num_attention_heads
)
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
self_outputs = self.attention(
hidden_states, head_mask, output_attentions, relative_position_bias
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BeitIntermediate(nn.Module):
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BeitOutput(nn.Module):
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class TemporalAttentionBeit(nn.Module):
"""temporal attention using BeitAttention"""
def __init__(self, config: BeitConfig):
"""TODO: to be defined."""
super().__init__()
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention = BeitAttention(config, window_size=None)
self.scale = nn.Parameter(
config.temporal_model_init_value * torch.ones((config.hidden_size)),
requires_grad=True,
)
self.drop_path = BeitDropPath(config.drop_path_rate)
def forward(self, hidden_states: torch.Tensor):
"""forward function
Args:
hidden_states (torch.Tensor): The input. Shape: [b,t,l,c]
Returns: TODO
"""
b = hidden_states.shape[0]
output = einops.rearrange(hidden_states, "b t l c -> (b l) t c")
output = self.layernorm_before(output)
output = self.attention(output)
output = einops.rearrange(output[0], "(b l) t c -> b t l c", b=b)
return hidden_states + self.drop_path(output[0]) * self.scale
class BeitLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(
self,
config: BeitConfig,
window_size: Optional[tuple] = None,
drop_path_rate: float = 0.0,
) -> None:
super().__init__()
self.config = config
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BeitAttention(config, window_size=window_size)
self.intermediate = BeitIntermediate(config)
self.output = BeitOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.drop_path = (
BeitDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.temporal_model_position = config.temporal_model_position
init_values = config.layer_scale_init_value
if init_values > 0:
self.lambda_1 = nn.Parameter(
init_values * torch.ones((config.hidden_size)), requires_grad=True
)
self.lambda_2 = nn.Parameter(
init_values * torch.ones((config.hidden_size)), requires_grad=True
)
else:
self.lambda_1, self.lambda_2 = None, None
if config.temporal_model_block == "st_adapter":
self.temp_model = STAdapter(**config.temporal_model_config)
elif config.temporal_model_block == "timesformer":
self.temp_model = TemporalAttention(**config.temporal_model_config)
elif config.temporal_model_block == "s4":
self.temp_model = TemporalS4(**config.temporal_model_config)
elif config.temporal_model_block == "ta_beit":
self.temp_model = TemporalAttentionBeit(config)
elif config.temporal_model_block == "window_attention":
self.temp_model = WindowTemporalAttention(**config.temporal_model_config)
elif config.temporal_model_block == "xclip":
self.temp_model = X_CLIP(**config.temporal_model_config)
elif config.temporal_model_block == "none":
self.temp_model = None
else:
raise ValueError(f"not accepted temporal model: {config.temporal_model_block}")
self.temporal_model_block = config.temporal_model_block
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
b, t, l, c = hidden_states.shape
if self.temporal_model_block == "xclip":
assert (
self.temporal_model_position == "first" and self.config.add_k_prompts == 1
), "xclip must be put before the attention and add_k_prompts must be 1."
if self.temp_model is not None and self.temporal_model_position == "first":
hidden_states = self.temp_model(hidden_states)
hidden_states = einops.rearrange(hidden_states, "b t l c -> (b t) l c")
self_attention_outputs = self.attention(
self.layernorm_before(
hidden_states
), # in BEiT, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
relative_position_bias=relative_position_bias,
)
attention_output = self_attention_outputs[0]
# add self attentions if we output attention weights
outputs = self_attention_outputs[1:]
# apply lambda_1 if present
if self.lambda_1 is not None:
attention_output = self.lambda_1 * attention_output
# first residual connection
hidden_states = self.drop_path(attention_output) + hidden_states
# in BEiT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
if self.lambda_2 is not None:
layer_output = self.lambda_2 * layer_output
# second residual connection
layer_output = self.drop_path(layer_output) + hidden_states
layer_output = einops.rearrange(layer_output, "(b t) l c -> b t l c", b=b)
# apply temporal modeling block
if self.temp_model is not None and self.temporal_model_position == "last":
layer_output = self.temp_model(layer_output)
outputs = (layer_output,) + outputs
return outputs
class BeitRelativePositionBias(nn.Module):
def __init__(self, config: BeitConfig, window_size: tuple) -> None:
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, config.num_attention_heads)
) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
# add bias for prompts
k = config.add_k_prompts
self.k = k
if k > 0:
self.prompt_bias_table = nn.parameter.Parameter(
torch.zeros((2 + k) * k, config.num_attention_heads)
) # k prompt-to-token, k token-to-prompt, k*k prompt-to-promt
else:
self.prompt_bias_table = None
def forward(self) -> torch.Tensor:
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1,
-1,
) # Wh*Ww,Wh*Ww,nH
k = self.k
if k > 0:
l = self.window_size[0] * self.window_size[1] + 1
bias = torch.zeros(l + k, l + k, relative_position_bias.shape[-1]).to(
relative_position_bias.device
)
bias[:l, :l] = relative_position_bias
bias[l:, :l] = self.prompt_bias_table[:k].view(k, 1, -1) # prompt to token
bias[:l, l:] = self.prompt_bias_table[k : 2 * k].view(1, k, -1) # token to prompt
bias[l:, l:] = self.prompt_bias_table[2 * k, :].view(k, k, -1) # prompt to prompt
# bias[k:, k:] = relative_position_bias
# bias[:k, k:] = self.prompt_bias_table[:k].view(k, 1, -1)
# bias[k:, :k] = self.prompt_bias_table[k : 2 * k].view(1, k, -1)
# bias[:k, :k] = self.prompt_bias_table[2 * k :].view(k, k, -1)
else:
bias = relative_position_bias
return bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class BeitEncoder(nn.Module):
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
super().__init__()
self.config = config
if config.use_shared_relative_position_bias:
self.relative_position_bias = BeitRelativePositionBias(
config, window_size=window_size
)
else:
self.relative_position_bias = None
# stochastic depth decay rule
dpr = [
x.item()
for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)
]
self.layer = nn.ModuleList(
[
BeitLayer(
config,
window_size=window_size if config.use_relative_position_bias else None,
drop_path_rate=dpr[i],
)
for i in range(config.num_hidden_layers)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
# all_hidden_states = all_hidden_states + (
# einops.rearrange(hidden_states, "b t l c -> (b t) l c"),
# )
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
layer_head_mask,
use_reentrant=False,
)
else:
relative_position_bias = (
self.relative_position_bias()
if self.relative_position_bias is not None
else None
)
layer_outputs = layer_module(
hidden_states, layer_head_mask, output_attentions, relative_position_bias
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
# hidden_states = einops.rearrange(hidden_states, "b t l c -> (b t) l c")
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attentions]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class BeitPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BeitConfig
base_model_prefix = "beit"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, BeitEncoder):
module.gradient_checkpointing = value
BEIT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`BeitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BEIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`BeitFeatureExtractor`]. See
[`BeitFeatureExtractor.__call__`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Beit Model transformer outputting raw hidden-states without any specific head on top.",
BEIT_START_DOCSTRING,
)
class BeitModel(BeitPreTrainedModel):
def __init__(self, config: BeitConfig, add_pooling_layer: bool = True) -> None:
super().__init__(config)
self.config = config
self.embeddings = BeitEmbeddings(config)
self.encoder = BeitEncoder(
config, window_size=self.embeddings.patch_embeddings.patch_shape
)
self.layernorm = (
nn.Identity()
if config.use_mean_pooling
else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
)
self.pooler = BeitPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BeitModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BeitModelOutputWithPooling]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
# pixel_values: [bsz, nframes, c, h, w]
assert pixel_values.ndim == 5, logger.error(
f"input shape to st_beit: {pixel_values.shape}"
)
embedding_output = self.embeddings(
pixel_values, bool_masked_pos
) # [bs, nframes, L, c]
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
# logger.info(f"sequence_output: {sequence_output.shape}. pooled_output: {pooled_output.shape}")
if not return_dict:
head_outputs = (
(sequence_output, pooled_output)
if pooled_output is not None
else (sequence_output,)
)
return head_outputs + encoder_outputs[1:]
return BeitModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class BeitPooler(nn.Module):
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.num_prompts = config.add_k_prompts
self.layernorm = (
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if config.use_mean_pooling
else None
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""
Args:
hidden_states (torch.Tensor): Shape: [B,T,L,C]
"""
if self.layernorm is not None:
# Mean pool the final hidden states of the patch tokens
# patch_tokens = hidden_states[:, 1 + self.num_prompts :, :]
if self.num_prompts > 0:
patch_tokens = hidden_states[:, :, 1 : -self.num_prompts, :]
else:
patch_tokens = hidden_states[:, :, 1:, :]
pooled_output = self.layernorm(patch_tokens.mean(2))
else:
# Pool by simply taking the final hidden state of the [CLS] token
pooled_output = hidden_states[:, :, 0]
return pooled_output
@add_start_docstrings(
"""Beit Model transformer with a 'language' modeling head on top. BEiT does masked image modeling by predicting
visual tokens of a Vector-Quantize Variational Autoencoder (VQ-VAE), whereas other vision models like ViT and DeiT
predict RGB pixel values. As a result, this class is incompatible with [`AutoModelForMaskedImageModeling`], so you
will need to use [`BeitForMaskedImageModeling`] directly if you wish to do masked image modeling with BEiT.""",
BEIT_START_DOCSTRING,
)
class BeitForMaskedImageModeling(BeitPreTrainedModel):
def __init__(self, config: BeitConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=False)
# Classifier head
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, MaskedLMOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import BeitFeatureExtractor, BeitForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, logits = outputs.loss, outputs.logits
>>> list(logits.shape)
[1, 196, 8192]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.layernorm(sequence_output)
prediction_scores = self.lm_head(sequence_output[:, 1:])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels)
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final
hidden states of the patch tokens) e.g. for ImageNet.
""",
BEIT_START_DOCSTRING,
)
class BeitForImageClassification(BeitPreTrainedModel):
def __init__(self, config: BeitConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=True)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_size, config.num_labels)
if config.num_labels > 0
else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.beit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class BeitConvModule(nn.Module):
"""
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
padding: Union[int, Tuple[int, int], str] = 0,
bias: bool = False,
dilation: Union[int, Tuple[int, int]] = 1,
) -> None:
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding,
bias=bias,
dilation=dilation,
)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.ReLU()
def forward(self, input: torch.Tensor) -> torch.Tensor:
output = self.conv(input)
output = self.bn(output)
output = self.activation(output)
return output
class BeitPyramidPoolingBlock(nn.Module):
def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None:
super().__init__()
self.layers = [
nn.AdaptiveAvgPool2d(pool_scale),
BeitConvModule(in_channels, channels, kernel_size=1),
]
for i, layer in enumerate(self.layers):
self.add_module(str(i), layer)
def forward(self, input: torch.Tensor) -> torch.Tensor:
hidden_state = input
for layer in self.layers:
hidden_state = layer(hidden_state)
return hidden_state
class BeitPyramidPoolingModule(nn.Module):
"""
Pyramid Pooling Module (PPM) used in PSPNet.
Args:
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid
Module.
in_channels (int): Input channels.
channels (int): Channels after modules, before conv_seg.
align_corners (bool): align_corners argument of F.interpolate.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(
self,
pool_scales: Tuple[int, ...],
in_channels: int,
channels: int,
align_corners: bool,
) -> None:
super().__init__()
self.pool_scales = pool_scales
self.align_corners = align_corners
self.in_channels = in_channels
self.channels = channels
self.blocks = []
for i, pool_scale in enumerate(pool_scales):
block = BeitPyramidPoolingBlock(
pool_scale=pool_scale, in_channels=in_channels, channels=channels
)
self.blocks.append(block)
self.add_module(str(i), block)
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
ppm_outs = []
for ppm in self.blocks:
ppm_out = ppm(x)
upsampled_ppm_out = nn.functional.interpolate(
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners
)
ppm_outs.append(upsampled_ppm_out)
return ppm_outs
class BeitUperHead(nn.Module):
"""
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of
[UPerNet](https://arxiv.org/abs/1807.10221).
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(self, config: BeitConfig) -> None:
super().__init__()
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6)
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768]
self.channels = config.hidden_size
self.align_corners = False
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
# PSP Module
self.psp_modules = BeitPyramidPoolingModule(
self.pool_scales,
self.in_channels[-1],
self.channels,
align_corners=self.align_corners,
)
self.bottleneck = BeitConvModule(
self.in_channels[-1] + len(self.pool_scales) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
# FPN Module
self.lateral_convs = nn.ModuleList()
self.fpn_convs = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1)
fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1)
self.lateral_convs.append(l_conv)
self.fpn_convs.append(fpn_conv)
self.fpn_bottleneck = BeitConvModule(
len(self.in_channels) * self.channels,
self.channels,
kernel_size=3,
padding=1,
)
def psp_forward(self, inputs):
x = inputs[-1]
psp_outs = [x]
psp_outs.extend(self.psp_modules(x))
psp_outs = torch.cat(psp_outs, dim=1)
output = self.bottleneck(psp_outs)
return output
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
# build laterals
laterals = [
lateral_conv(encoder_hidden_states[i])
for i, lateral_conv in enumerate(self.lateral_convs)
]
laterals.append(self.psp_forward(encoder_hidden_states))
# build top-down path
used_backbone_levels = len(laterals)
for i in range(used_backbone_levels - 1, 0, -1):
prev_shape = laterals[i - 1].shape[2:]
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate(
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners
)
# build outputs
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)]
# append psp feature
fpn_outs.append(laterals[-1])
for i in range(used_backbone_levels - 1, 0, -1):
fpn_outs[i] = nn.functional.interpolate(
fpn_outs[i],
size=fpn_outs[0].shape[2:],
mode="bilinear",
align_corners=self.align_corners,
)
fpn_outs = torch.cat(fpn_outs, dim=1)
output = self.fpn_bottleneck(fpn_outs)
output = self.classifier(output)
return output
class BeitFCNHead(nn.Module):
"""
Fully Convolution Networks for Semantic Segmentation. This head is implemented of
[FCNNet](https://arxiv.org/abs/1411.4038>).
Args:
config (BeitConfig): Configuration.
in_channels
kernel_size (int): The kernel size for convs in the head. Default: 3.
dilation (int): The dilation rate for convs in the head. Default: 1.
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation.
"""
def __init__(
self,
config: BeitConfig,
in_index: int = 2,
kernel_size: int = 3,
dilation: Union[int, Tuple[int, int]] = 1,
) -> None:
super().__init__()
self.in_channels = config.hidden_size
self.channels = config.auxiliary_channels
self.num_convs = config.auxiliary_num_convs
self.concat_input = config.auxiliary_concat_input
self.in_index = in_index
conv_padding = (kernel_size // 2) * dilation
convs = []
convs.append(
BeitConvModule(
self.in_channels,
self.channels,
kernel_size=kernel_size,
padding=conv_padding,
dilation=dilation,
)
)
for i in range(self.num_convs - 1):
convs.append(
BeitConvModule(
self.channels,
self.channels,
kernel_size=kernel_size,
padding=conv_padding,
dilation=dilation,
)
)
if self.num_convs == 0:
self.convs = nn.Identity()
else:
self.convs = nn.Sequential(*convs)
if self.concat_input:
self.conv_cat = BeitConvModule(
self.in_channels + self.channels,
self.channels,
kernel_size=kernel_size,
padding=kernel_size // 2,
)
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1)
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
# just take the relevant feature maps
hidden_states = encoder_hidden_states[self.in_index]
output = self.convs(hidden_states)
if self.concat_input:
output = self.conv_cat(torch.cat([hidden_states, output], dim=1))
output = self.classifier(output)
return output
@add_start_docstrings(
"""
Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
""",
BEIT_START_DOCSTRING,
)
class BeitForSemanticSegmentation(BeitPreTrainedModel):
def __init__(self, config: BeitConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.beit = BeitModel(config, add_pooling_layer=False)
# FPNs
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(
config.hidden_size, config.hidden_size, kernel_size=2, stride=2
),
nn.BatchNorm2d(config.hidden_size),
nn.GELU(),
nn.ConvTranspose2d(
config.hidden_size, config.hidden_size, kernel_size=2, stride=2
),
)
self.fpn2 = nn.Sequential(
nn.ConvTranspose2d(
config.hidden_size, config.hidden_size, kernel_size=2, stride=2
),
)
self.fpn3 = nn.Identity()
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
# Semantic segmentation head(s)
self.decode_head = BeitUperHead(config)
self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
def compute_loss(self, logits, auxiliary_logits, labels):
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
if auxiliary_logits is not None:
upsampled_auxiliary_logits = nn.functional.interpolate(
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
# compute weighted loss
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
main_loss = loss_fct(upsampled_logits, labels)
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
return loss
@add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoFeatureExtractor, BeitForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
>>> inputs = feature_extractor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height, width)
>>> logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
outputs = self.beit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
# only keep certain features, and reshape
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings
features = [
feature
for idx, feature in enumerate(encoder_hidden_states)
if idx + 1 in self.config.out_indices
]
batch_size = pixel_values.shape[0]
patch_resolution = self.config.image_size // self.config.patch_size
features = [
x[:, 1:, :]
.permute(0, 2, 1)
.reshape(batch_size, -1, patch_resolution, patch_resolution)
for x in features
]
# apply FPNs
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
for i in range(len(features)):
features[i] = ops[i](features[i])
logits = self.decode_head(features)
auxiliary_logits = None
if self.auxiliary_head is not None:
auxiliary_logits = self.auxiliary_head(features)
loss = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
else:
loss = self.compute_loss(logits, auxiliary_logits, labels)
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)