VD-GR: Boosting Visual Dialog with Cascaded Spatial-Temporal Multi-Modal GRaphs

**[Adnen Abdessaied][5],   [Lei Shi][6],   [Andreas Bulling][7]**

**WACV'24, Hawaii, USA**
**[[Paper][8]]** -------------------

# Citation If you find our code useful or use it in your own projects, please cite our paper: ```bibtex @InProceedings{Abdessaied_2024_WACV, author = {Abdessaied, Adnen and Shi, Lei and Bulling, Andreas}, title = {VD-GR: Boosting Visual Dialog With Cascaded Spatial-Temporal Multi-Modal Graphs}, booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)}, month = {January}, year = {2024}, pages = {5805-5814} } ``` # Table of Contents * [Setup and Dependencies](#Setup-and-Dependencies) * [Download Data](#Download-Data) * [Pre-trained Checkpoints](#Pre-trained-Checkpoints) * [Training](#Training) * [Results](#Results) # Setup and Dependencies We implemented our model using Python 3.7 and PyTorch 1.11.0 (CUDA 11.3, CuDNN 8.2.0). We recommend to setup a virtual environment using Anaconda.
1. Install [git lfs][1] on your system 2. Clone our repository to download the data, checkpoints, and code ```shell git lfs install git clone https://git.hcics.simtech.uni-stuttgart.de/public-projects/VDGR.git ``` 3. Create a conda environment and install dependencies ```shell conda create -n vdgr python=3.7 conda activate vdgr conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch conda install pyg -c pyg # 2.1.0 pip install pytorch-transformers pip install pytorch_pretrained_bert pip install pyhocon glog wandb lmdb ``` 4. If you wish to speed-up training, we recommend installing [apex][2] ```shell git clone https://github.com/NVIDIA/apex cd apex # if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key... pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./ # otherwise pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./ cd .. ``` # Download Data 1. Download the extacted visual features of [VisDial][3] and setup all files we used in our work. We provide a shell script for convenience: ```shell ./setup_data.sh # Please make sure you have enough disk space ``` If everything was correctly setup, the ```data/``` folder should look like this ``` ├── history_adj_matrices │ ├── test │ ├── *.pkl │ ├── train │ ├── *.pkl │ ├── val │ ├── *.pkl ├── question_adj_matrices │ ├── test │ ├── *.pkl │ ├── train │ ├── *.pkl │ ├── val │ ├── *.pkl ├── img_adj_matrices │ ├── *.pkl ├── parse_vocab.pkl ├── test_dense_mapping.json ├── tr_dense_mapping.json ├── val_dense_mapping.json ├── visdial_0.9_test.json ├── visdial_0.9_train.json ├── visdial_0.9_val.json ├── visdial_1.0_test.json ├── visdial_1.0_train_dense_annotations.json ├── visdial_1.0_train_dense.json ├── visdial_1.0_train.json ├── visdial_1.0_val_dense_annotations.json ├── visdial_1.0_val.json ├── visdialconv_dense_annotations.json ├── visdialconv.json ├── vispro_dense_annotations.json └── vispro.json ``` # Pre-trained Checkpoints For convenience, we provide checkpoints of our model after the warm-up training stage in ```ckpt/``` for both VisDial v1.0 and VisDial v0.9.
These checkpoints will be downloaded with the code if you use ```git lfs```. # Training We trained our model on 8 Nvidia Tesla V100-32GB GPUs. The default hyperparameters in ```config/vdgr.conf``` and ```config/bert_base_6layer_6conect.json``` need to be adjusted if your setup differs from ours. ## Phase 1 ### Training 1. In this phase, we train our model on VisDial v1.0 via ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py \ --model vdgr/P1 \ --mode train \ --tag K2_v1.0 \ --wandb_mode online \ --wandb_project your_wandb_project_name ``` ⚠️ On a similar setup to ours, this will take roughly 20h to complete using apex for training. 2. To train on VisDial v0.9: * Set ```visdial_version = 0.9``` in ```config/vdgr.conf``` * Set ```start_path = ckpt/vdgr_visdial_v0.9_after_warmup_K2.ckpt``` in ```config/vdgr.conf``` * Run ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py \ --model vdgr/P1 \ --mode train \ --tag K2_v0.9 \ --wandb_mode online \ --wandb_project your_wandb_project_name ``` ### Inference 1. For inference on VisDial v1.0 val, VisDialConv, or VisPro: * Set ```eval_dataset = {visdial, visdial_conv, visdial_vispro}``` in ```logs/vdgr/P1_K2_v1.0/code/config/vdgr.conf``` * Run ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py \ --model vdgr/P1 \ --mode eval \ --eval_dir logs/vdgr/P1_K2_v1.0 \ --wandb_mode offline \ ``` 2. For inference on VisDial v0.9: * Set ```eval_dataset = visdial``` in ```logs/vdgr/P1_K2_v0.9/code/config/vdgr.conf``` * Run ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py \ --model vdgr/P1 \ --mode eval \ --eval_dir logs/vdgr/P1_K2_v0.9 \ --wandb_mode offline \ ``` ⚠️ This might take some time to finish as the testing data of VisDial v0.9 is large. 3. For inference on the ```visdial_v1.0 test```: * Run ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py \ --model vdgr/P1 \ --mode predict \ --eval_dir logs/vdgr/P1_K2_v1.0 \ --wandb_mode offline \ ``` * The output file will be saved in ```output/``` ## Phase 2 In this phase, we finetune on dense annotations to improve the NDCG score (Only supported for VisDial v1.0.) 1. Run ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py \ --model vdgr/P2_CE \ --mode train \ --tag K2_v1.0_CE \ --wandb_mode online \ --wandb_project your_wandb_project_name ``` ⚠️This will take roughly 3-4 hours to complete using the same setup as before and [DP][4] for training. 2. For inference on VisDial v1.0: * Run: ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py \ --model vdgr/P2_CE \ --mode predict \ --eval_dir logs/vdgr/P1_K2_v1.0_CE \ --wandb_mode offline \ ``` * The output file will be saved in ```output/``` ## Phase 3 ### Training In the final phase, we train an ensemble method comprising of 8 models using ```K={1,2,3,4}``` and ```dense_loss={ce, listnet}```. For ```K=k```: 1. Set the value of ```num_v_gnn_layers, num_q_gnn_layers, num_h_gnn_layers``` to ```k``` 2. Set ```start_path = ckpt/vdgr_visdial_v1.0_after_warmup_K[k].ckpt``` in ```config/vdgr.conf``` (P1) 3. Phase 1 training: ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py \ --model vdgr/P1 \ --mode train \ --tag K[k]_v1.0 \ --wandb_mode online \ --wandb_project your_wandb_project_name ``` 3. Set ```start_path = logs/vdgr/P1_K[k]_v1.0/epoch_best.ckpt``` in ```config/vdgr.conf``` (P2) 4. Phase 2 training: * Fine-tune with CE: ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py \ --model vdgr/P2_CE \ --mode train \ --tag K[k]_v1.0_CE \ --wandb_mode online \ --wandb_project your_wandb_project_name ``` * Fine-tune with LISTNET: ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py \ --model vdgr/P2_LISTNET \ --mode train \ --tag K[k]_v1.0_LISTNET \ --wandb_mode online \ --wandb_project your_wandb_project_name ``` ### Inference 1. For inference on VisDial v1.0 test: ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py \ --model vdgr/P2_[CE,LISTNET] \ --mode predict \ --eval_dir logs/vdgr/P2_K[1,2,3,4]_v1.0_[CE,LISTNET] \ --wandb_mode offline \ ``` 2. Finally, merge the outputs of all models ```shell python ensemble.py \ --exp test \ --mode predict \ ``` The output file will be saved in ```output/``` # Results ## VisDial v0.9 | Model | MRR | R@1 | R@5 | R@10 | Mean | |:--------:|:---:|:---:|:---:|:----:|:----:| | Prev. SOTA | 71.99 | 59.41 | 87.92 | 94.59 | 2.87 | | VD-GR | **74.50** | **62.10** | **90.49** | **96.37** | **2.45** | ## VisDialConv | Model | NDCG | MRR | R@1 | R@5 | R@10 | Mean | |:--------:|:----:|:---:|:---:|:---:|:----:|:----:| | Prev. SOTA | 61.72 | 61.79 | 48.95 | 77.50 | 86.71 | 4.72 | | VD-GR | **67.09** | **66.82** | **54.47** | **81.71** | **91.44** | **3.54** | ## VisPro | Model | NDCG | MRR | R@1 | R@5 | R@10 | Mean | |:--------:|:----:|:---:|:---:|:---:|:----:|:----:| | Prev. SOTA | 59.30 | 62.29 | 48.35 | 80.10 | 88.87 | 4.37 | | VD-GR | **60.35** | **69.89** | **57.21** | **85.97** | **92.68** | **3.15** | ## VisDial V1.0 Val | Model | NDCG | MRR | R@1 | R@5 | R@10 | Mean | |:--------:|:----:|:---:|:---:|:---:|:----:|:----:| | Prev. SOTA | 65.47 | 69.71 | 56.79 | 85.82 | 93.64 | 3.15 | | VD-GR | 64.32 | **69.91** | **57.01** | **86.14** | **93.74** | **3.13** | ## VisDial V1.0 Test | Model | NDCG | MRR | R@1 | R@5 | R@10 | Mean | |:--------:|:----:|:---:|:---:|:---:|:----:|:----:| | Prev. SOTA | 64.91 | 68.73 | 55.73 | 85.38 | 93.53 | 3.21 | | VD-GR | 63.49 | 68.65 | 55.33 | **85.58** | **93.85** | **3.20** | | ♣️ Prev. SOTA | 75.92 | 56.18 | 45.32 | 68.05 | 80.98 | 5.42 | | ♣️ VD-GR | **75.95** | **58.30** | **46.55** | **71.45** | 84.52 | **5.32** | | ♣️♦️ Prev. SOTA | 76.17 | 56.42 | 44.75 | 70.23 | 84.52 | 5.47 | | ♣️♦️ VD-GR | **76.43** | 56.35 | **45.18** | 68.13 | 82.18 | 5.79 | ♣️ = Finetuning on dense annotations, ♦️ = Ensemble model # Contributors - [Adnen Abdessaied][5] For any questions or enquiries, don't hesitate to contact the above contributor(s). [1]: https://git-lfs.com/ [2]: https://github.com/NVIDIA/apex [3]: https://visualdialog.org/ [4]: https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html [5]: https://www.perceptualui.org/people/abdessaied/ [6]: https://www.perceptualui.org/people/shi/ [7]: https://www.perceptualui.org/people/bulling/ [8]: https://www.perceptualui.org/publications/abdessaied24_wacv.pdf