266 lines
11 KiB
Python
266 lines
11 KiB
Python
|
import sys
|
||
|
import numpy as np
|
||
|
from config import conf
|
||
|
import os
|
||
|
import getopt
|
||
|
import threading
|
||
|
from sklearn.cross_validation import LabelKFold as LKF
|
||
|
from sklearn.cross_validation import StratifiedKFold as SKF
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
from sklearn.ensemble import RandomForestClassifier
|
||
|
from sklearn.metrics import f1_score, accuracy_score
|
||
|
|
||
|
|
||
|
def predict_all():
|
||
|
# add threads to a list, and wait for all of them in the end
|
||
|
threads = []
|
||
|
|
||
|
for trait in trait_list:
|
||
|
for si in xrange(low_repetitions, num_repetitions):
|
||
|
fname = conf.get_result_filename(annotation_value, trait, shuffle_labels, si, add_suffix=True)
|
||
|
if not os.path.exists(fname):
|
||
|
thread = threading.Thread(target=save_predictions, args=(trait, conf.get_result_filename(annotation_value, trait, shuffle_labels, si), si))
|
||
|
sys.stdout.flush()
|
||
|
thread.start()
|
||
|
threads.append(thread)
|
||
|
else:
|
||
|
print "existing solution:", fname
|
||
|
|
||
|
for thread in threads:
|
||
|
thread.join()
|
||
|
print 'waiting to join'
|
||
|
|
||
|
def load_data(ws, annotation_value, t, chosen_features = None):
|
||
|
x_file, y_file, id_file = conf.get_merged_feature_files(ws)
|
||
|
if annotation_value == conf.annotation_all:
|
||
|
x_ws = np.genfromtxt(x_file, delimiter=',', skip_header=1)
|
||
|
y_ws = np.genfromtxt(y_file, delimiter=',', skip_header=1).astype(int)[:,t]
|
||
|
ids_ws = np.genfromtxt(id_file, delimiter=',', skip_header=1).astype(int)[:,0]
|
||
|
elif annotation_value == conf.annotation_shop:
|
||
|
x_ws = np.genfromtxt(x_file, delimiter=',', skip_header=1)
|
||
|
y_ws = np.genfromtxt(y_file, delimiter=',', skip_header=1).astype(int)[:,t]
|
||
|
ids_ws = np.genfromtxt(id_file, delimiter=',', skip_header=1).astype(int)
|
||
|
|
||
|
x_ws = x_ws[ids_ws[:,1] == conf.time_window_annotation_shop,:]
|
||
|
y_ws = y_ws[ids_ws[:,1] == conf.time_window_annotation_shop]
|
||
|
ids_ws = ids_ws[ids_ws[:,1] == conf.time_window_annotation_shop,0]
|
||
|
elif annotation_value == conf.annotation_ways:
|
||
|
x_ws = np.genfromtxt(x_file, delimiter=',', skip_header=1)
|
||
|
y_ws = np.genfromtxt(y_file, delimiter=',', skip_header=1).astype(int)[:,t]
|
||
|
ids_ws = np.genfromtxt(id_file, delimiter=',', skip_header=1).astype(int)
|
||
|
|
||
|
x_ws = x_ws[(ids_ws[:,1] == conf.time_window_annotation_wayI) | (ids_ws[:,1] == conf.time_window_annotation_wayII),:]
|
||
|
y_ws = y_ws[(ids_ws[:,1] == conf.time_window_annotation_wayI) | (ids_ws[:,1] == conf.time_window_annotation_wayII)]
|
||
|
ids_ws = ids_ws[(ids_ws[:,1] == conf.time_window_annotation_wayI) | (ids_ws[:,1] == conf.time_window_annotation_wayII),0]
|
||
|
else:
|
||
|
print 'unknown annotation value', annotation_value
|
||
|
print 'should be 0 (all data), 1 (way) or 2 (shop).'
|
||
|
sys.exit(1)
|
||
|
if chosen_features is not None:
|
||
|
x_ws = x_ws[:,chosen_features]
|
||
|
return x_ws, y_ws, ids_ws
|
||
|
|
||
|
|
||
|
def save_predictions(t, filename, rs):
|
||
|
"""
|
||
|
train a classifier and write results to file
|
||
|
"""
|
||
|
# create RandomForest classifier with parameters given in _conf.py
|
||
|
clf = RandomForestClassifier(random_state=rs, verbose=verbosity, class_weight='balanced',
|
||
|
n_estimators=conf.n_estimators, n_jobs=conf.max_n_jobs, max_features=conf.tree_max_features,
|
||
|
max_depth=conf.tree_max_depth)
|
||
|
|
||
|
# create StandardScaler that will be used to scale each feature
|
||
|
# such that it has mean 0 and std 1 on the trianing set
|
||
|
scaler = StandardScaler(with_std=True, with_mean=True)
|
||
|
|
||
|
# use ground truth to create folds for outer cross validation in a stratified way, i.e. such that
|
||
|
# each label occurs equally often
|
||
|
participant_scores = np.loadtxt(conf.binned_personality_file, delimiter=',', skiprows=1, usecols=(t+1,))
|
||
|
outer_cv = SKF(participant_scores, conf.n_outer_folds, shuffle=True)
|
||
|
|
||
|
# initialise arrays to save information
|
||
|
feat_imp = np.zeros((len(outer_cv), conf.max_n_feat)) # feature importance
|
||
|
preds = np.zeros((conf.n_participants), dtype=int) # predictions on participant level
|
||
|
detailed_preds = np.zeros((conf.n_participants), dtype=object) # predictions on time window level, array of lists
|
||
|
chosen_ws_is = np.zeros((conf.n_participants), dtype=int) # indices of window sizes chosen in the inner cross validation
|
||
|
|
||
|
for outer_i, (outer_train_participants, outer_test_participants) in enumerate(outer_cv):
|
||
|
print
|
||
|
print str(outer_i + 1) + '/' + str(conf.n_outer_folds)
|
||
|
|
||
|
# find best window size in inner cv, and discard unimportant features
|
||
|
inner_performance = np.zeros((conf.n_inner_folds, len(all_window_sizes)))
|
||
|
inner_feat_importances = np.zeros((conf.max_n_feat, len(all_window_sizes)))
|
||
|
|
||
|
for ws_i in xrange(0, len(all_window_sizes)):
|
||
|
ws = all_window_sizes[ws_i]
|
||
|
print '\t', 'ws ' + str(ws_i + 1) + '/' + str(len(all_window_sizes))
|
||
|
|
||
|
# load data for this window size
|
||
|
x_ws, y_ws, ids_ws = load_data(ws, annotation_value, t)
|
||
|
if shuffle_labels:
|
||
|
np.random.seed(316588 + 111 * t + rs)
|
||
|
perm = np.random.permutation(len(y_ws))
|
||
|
y_ws = y_ws[perm]
|
||
|
ids_ws = ids_ws[perm]
|
||
|
|
||
|
# cut out the outer train samples
|
||
|
outer_train_samples = np.array([p in outer_train_participants for p in ids_ws])
|
||
|
outer_train_x = x_ws[outer_train_samples, :]
|
||
|
outer_train_y = y_ws[outer_train_samples]
|
||
|
outer_train_y_ids = ids_ws[outer_train_samples]
|
||
|
|
||
|
# build inner cross validation such that all samples of one person are either in training or testing
|
||
|
inner_cv = LKF(outer_train_y_ids, n_folds=conf.n_inner_folds)
|
||
|
for inner_i, (inner_train_indices, inner_test_indices) in enumerate(inner_cv):
|
||
|
# create inner train and test samples. Note: both are taken from outer train samples!
|
||
|
inner_x_train = outer_train_x[inner_train_indices, :]
|
||
|
inner_y_train = outer_train_y[inner_train_indices]
|
||
|
|
||
|
inner_x_test = outer_train_x[inner_test_indices, :]
|
||
|
inner_y_test = outer_train_y[inner_test_indices]
|
||
|
|
||
|
# fit scaler on train set and scale both train and test set with the result
|
||
|
scaler.fit(inner_x_train)
|
||
|
inner_x_train = scaler.transform(inner_x_train)
|
||
|
inner_x_test = scaler.transform(inner_x_test)
|
||
|
|
||
|
# fit Random Forest
|
||
|
clf.fit(inner_x_train, inner_y_train)
|
||
|
|
||
|
# save predictions and feature importance
|
||
|
inner_pred = clf.predict(inner_x_test)
|
||
|
inner_feat_importances[:, ws_i] += clf.feature_importances_
|
||
|
|
||
|
# compute and save performance in terms of accuracy
|
||
|
innerpreds = []
|
||
|
innertruth = []
|
||
|
inner_test_ids = outer_train_y_ids[inner_test_indices]
|
||
|
for testp in np.unique(inner_test_ids):
|
||
|
(values, counts) = np.unique(inner_pred[inner_test_ids == testp], return_counts=True)
|
||
|
ind = np.argmax(counts)
|
||
|
innerpreds.append(values[ind])
|
||
|
innertruth.append(inner_y_test[inner_test_ids == testp][0])
|
||
|
inner_performance[inner_i, ws_i] = accuracy_score(np.array(innertruth), np.array(innerpreds))
|
||
|
print ' ACC: ', '%.2f' % (inner_performance[inner_i, ws_i] * 100)
|
||
|
|
||
|
# evaluate classifier on outer cv using the best window size from inner cv, and the most informative features
|
||
|
chosen_ws_i = np.argmax(np.mean(inner_performance, axis=0))
|
||
|
chosen_ws = all_window_sizes[chosen_ws_i]
|
||
|
chosen_features = (inner_feat_importances[:,chosen_ws_i]/float(conf.n_inner_folds)) > 0.005
|
||
|
|
||
|
# reload all data
|
||
|
x, y, ids = load_data(chosen_ws, annotation_value, t, chosen_features=chosen_features)
|
||
|
if shuffle_labels:
|
||
|
np.random.seed(316588 + 111 * t + rs + 435786)
|
||
|
perm = np.random.permutation(len(y))
|
||
|
y = y[perm]
|
||
|
ids = ids[perm]
|
||
|
|
||
|
outer_train_samples = np.array([p in outer_train_participants for p in ids])
|
||
|
outer_test_samples = np.array([p in outer_test_participants for p in ids])
|
||
|
|
||
|
if outer_train_samples.size > 0 and outer_test_samples.size > 0:
|
||
|
x_train = x[outer_train_samples, :]
|
||
|
y_train = y[outer_train_samples]
|
||
|
|
||
|
x_test = x[outer_test_samples, :]
|
||
|
y_test = y[outer_test_samples]
|
||
|
|
||
|
# scaling
|
||
|
scaler.fit(x_train)
|
||
|
x_train = scaler.transform(x_train)
|
||
|
x_test = scaler.transform(x_test)
|
||
|
|
||
|
# fit Random Forest
|
||
|
clf.fit(x_train, y_train)
|
||
|
pred = clf.predict(x_test)
|
||
|
|
||
|
for testp in outer_test_participants:
|
||
|
chosen_ws_is[testp] = chosen_ws_i
|
||
|
if testp in ids[outer_test_samples]:
|
||
|
# majority voting over all samples that belong to participant testp
|
||
|
(values, counts) = np.unique(pred[ids[outer_test_samples] == testp], return_counts=True)
|
||
|
ind = np.argmax(counts)
|
||
|
preds[testp] = values[ind]
|
||
|
detailed_preds[testp] = list(pred[ids[outer_test_samples] == testp])
|
||
|
else:
|
||
|
# participant does not occour in outer test set, e.g. because their time in the shop was too short
|
||
|
preds[testp] = -1
|
||
|
detailed_preds[testp] = []
|
||
|
|
||
|
# save the resulting feature importance
|
||
|
feat_imp[outer_i, chosen_features] = clf.feature_importances_
|
||
|
|
||
|
else:
|
||
|
for testp in outer_test_participants:
|
||
|
chosen_ws_is[testp] = -1
|
||
|
preds[testp] = np.array([])
|
||
|
truth[testp] = -1
|
||
|
feat_imp[outer_i, chosen_features] = -1
|
||
|
|
||
|
# compute resulting F1 score and save to file
|
||
|
nonzero_preds = preds[preds>0]
|
||
|
nonzero_truth = participant_scores[preds>0]
|
||
|
f1 = f1_score(nonzero_truth, nonzero_preds, average='macro')
|
||
|
np.savez(filename, f1=f1, predictions=preds, chosen_window_indices=chosen_ws_is,
|
||
|
feature_importances=feat_imp, detailed_predictions=detailed_preds)
|
||
|
print f1, 'written', filename
|
||
|
|
||
|
# If the program is run directly:
|
||
|
if __name__ == "__main__":
|
||
|
try:
|
||
|
opts, args = getopt.getopt(sys.argv[1:], "t:m:l:s:a:", [])
|
||
|
except getopt.GetoptError:
|
||
|
print 'valid arguments:'
|
||
|
print '-t trait index'
|
||
|
print '-s 1 to perform label permutation test, do not pass s or use -s 0 otherwise'
|
||
|
print '-l lowest number of repetitions'
|
||
|
print '-m max number of repetitions'
|
||
|
print '-a using partial data only: 0 (all data), 1 (way data), 2(shop data)'
|
||
|
sys.exit(2)
|
||
|
|
||
|
|
||
|
low_repetitions = 0
|
||
|
num_repetitions = conf.max_n_iter
|
||
|
verbosity = 0
|
||
|
shuffle_labels = False
|
||
|
annotation_value = conf.annotation_all
|
||
|
trait_list = xrange(0, conf.n_traits)
|
||
|
|
||
|
for opt, arg in opts:
|
||
|
if opt == '-t':
|
||
|
t = int(arg)
|
||
|
assert t in trait_list
|
||
|
trait_list = [t]
|
||
|
elif opt == '-a':
|
||
|
annotation_value = int(arg)
|
||
|
assert annotation_value in conf.annotation_values
|
||
|
elif opt == '-s':
|
||
|
shuffle_labels = bool(int(arg))
|
||
|
elif opt == '-m':
|
||
|
num_repetitions = int(arg)
|
||
|
elif opt == '-l':
|
||
|
low_repetitions = int(arg)
|
||
|
else:
|
||
|
print 'valid arguments:'
|
||
|
print '-t trait index'
|
||
|
print '-s 1 to perform label permutation test, do not pass s or use -s 0 otherwise'
|
||
|
print '-l lowest number of repetitions'
|
||
|
print '-m max number of repetitions'
|
||
|
print '-a using partial data only: 0 (all data), 1 (way data), 2(shop data)'
|
||
|
sys.exit(2)
|
||
|
|
||
|
result_folder = conf.get_result_folder(annotation_value)
|
||
|
if not os.path.exists(result_folder):
|
||
|
os.makedirs(result_folder)
|
||
|
|
||
|
# restrict window sizes in case shop data should be used
|
||
|
if annotation_value == conf.annotation_shop:
|
||
|
all_window_sizes = conf.all_shop_window_sizes
|
||
|
else:
|
||
|
all_window_sizes = conf.all_window_sizes
|
||
|
|
||
|
predict_all()
|