evaluation code
This commit is contained in:
parent
fc7973a49b
commit
3d3cebb956
6 changed files with 660 additions and 13 deletions
234
05_plot_weights.py
Normal file
234
05_plot_weights.py
Normal file
|
@ -0,0 +1,234 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from config import conf
|
||||
import os, sys
|
||||
import pandas as pns
|
||||
from config import names as gs
|
||||
import getopt
|
||||
import matplotlib.gridspec as gridspec
|
||||
from sklearn.metrics import f1_score
|
||||
|
||||
import seaborn as sns
|
||||
sns.set(style='whitegrid', color_codes=True)
|
||||
sns.set_context('poster')
|
||||
|
||||
dark_color = sns.xkcd_rgb['charcoal grey']
|
||||
light_color = sns.xkcd_rgb['cloudy blue']
|
||||
|
||||
def plot_weights():
|
||||
# for each personality trait, compute the list of median feature importances across all cross validation folds and iterations
|
||||
medianlist = []
|
||||
for t in xrange(0, conf.n_traits):
|
||||
medianlist.append(
|
||||
list(imp_df.loc[imp_df['T'] == t].groupby(by='feat_num')['feature importance'].median()))
|
||||
|
||||
# find the 5th to highest feature importance for each trait and write their importances into a .tex table - see Table 2, SI
|
||||
n = 15
|
||||
most_important_features = []
|
||||
most_important_features_lists = []
|
||||
for ml in medianlist:
|
||||
locallist = []
|
||||
for i in xrange(1,(n+1)):
|
||||
fn = gs.full_long_label_list[int(np.argsort(np.array(ml))[-i])]
|
||||
locallist.append(fn)
|
||||
if fn not in most_important_features:
|
||||
most_important_features.append(fn)
|
||||
most_important_features_lists.append(locallist)
|
||||
most_important_features.sort()
|
||||
|
||||
# write the full list of feature importances into a .tex table - shown in Table 2, SI
|
||||
filename = conf.figure_folder + '/table2.tex'
|
||||
with open(filename, 'w') as f:
|
||||
f.write('feature&Neur.&Extr.&Open.&Agree.&Consc.&PCS&CEI')
|
||||
f.write('\\\\\n\hline\n')
|
||||
for fi in xrange(0, len(most_important_features)):
|
||||
f.write(most_important_features[fi])
|
||||
for t in xrange(0, conf.n_traits):
|
||||
m = imp_df[(imp_df['T'] == t)&(imp_df.feature == most_important_features[fi])]['feature importance'].median()
|
||||
if most_important_features[fi] in most_important_features_lists[t]:
|
||||
f.write('& \\textbf{' + '%.3f}' % m)
|
||||
else:
|
||||
f.write('&' + '%.3f' % m)
|
||||
f.write('\\\\\n')
|
||||
print filename, 'written.'
|
||||
|
||||
# create Figure 2
|
||||
# first collect the set of individual top TOP_N features per trait:
|
||||
TOP_N = 10
|
||||
featlabels = []
|
||||
for trait in xrange(0, conf.n_traits):
|
||||
basedata = imp_df.loc[imp_df['T'] == trait]
|
||||
gp = basedata.groupby(by='feature')['feature importance'].median()
|
||||
order = gp.sort_values(ascending=False)
|
||||
featlabels.extend(order[:TOP_N].keys())
|
||||
super_feats = np.unique(np.array(featlabels))
|
||||
|
||||
# collect the sum of feature importances for these labels, to sort the features by their median
|
||||
super_feats_importance_sum = np.zeros((len(super_feats)))
|
||||
for i in xrange(0, len(super_feats)):
|
||||
super_feats_importance_sum[i] = imp_df[imp_df.feature==super_feats[i]].groupby(by=['T'])['feature importance'].median().sum()
|
||||
super_feats_sort_indices = np.argsort(super_feats_importance_sum)[::-1]
|
||||
|
||||
# add some interesting features from related work to the list of features whose importance will be shown
|
||||
must_have_feats = [
|
||||
'inter quartile range x', 'range x', 'maximum x', 'std x', '1st quartile x', 'range pupil diameter', 'median y',
|
||||
'mean difference of subsequent x', 'mean fixation duration', '3rd quartile y',
|
||||
'fixation rate', 'mean saccade amplitude', 'dwelling time'
|
||||
]
|
||||
# but only add them if they are not in the list yet
|
||||
additional_feats = np.array([a for a in must_have_feats if a not in super_feats], dtype=object)
|
||||
|
||||
# collect the sum of feature importances for these labels as well, so they can be sorted by their median importance in the plot
|
||||
additional_feats_importance_sum = np.zeros((len(additional_feats)))
|
||||
for trait in xrange(0, conf.n_traits):
|
||||
basedata = imp_df.loc[imp_df['T'] == trait]
|
||||
for i in xrange(0, len(additional_feats)):
|
||||
logi = basedata.feature == additional_feats[i]
|
||||
additional_feats_importance_sum[i] += float(basedata[logi]['feature importance'].median())
|
||||
additional_feats_sort_indices = np.argsort(additional_feats_importance_sum)[::-1]
|
||||
|
||||
# create the figure
|
||||
plt.figure(figsize=(20, 12))
|
||||
grs = gridspec.GridSpec(len(super_feats) + len(additional_feats) + 1, conf.n_traits)
|
||||
|
||||
for trait in xrange(0, conf.n_traits):
|
||||
# upper part of the figure, i.e. important features
|
||||
ax = plt.subplot(grs[:len(super_feats),trait])
|
||||
basedata = imp_df.loc[imp_df['T'] == trait]
|
||||
feat_importances = []
|
||||
for i in xrange(0, len(super_feats)):
|
||||
logi = basedata.feature == super_feats[super_feats_sort_indices][i]
|
||||
feat_importances.append(list(basedata[logi]['feature importance']))
|
||||
bp = plt.boxplot(x=feat_importances, #notch=True, labels=super_feats[super_feats_sort_indices],
|
||||
patch_artist=True, sym='', vert=False, whis='range', positions=np.arange(0,len(feat_importances)))
|
||||
|
||||
# asthetics
|
||||
for i in xrange(0, len(super_feats)):
|
||||
bp['boxes'][i].set(color=dark_color)
|
||||
bp['boxes'][i].set(facecolor=light_color)
|
||||
bp['whiskers'][2 * i].set(color=dark_color, linestyle='-')
|
||||
bp['whiskers'][2 * i + 1].set(color=dark_color, linestyle='-')
|
||||
bp['caps'][2 * i].set(color=dark_color)
|
||||
bp['caps'][2 * i + 1].set(color=dark_color)
|
||||
bp['medians'][i].set(color=dark_color)
|
||||
|
||||
if not trait == 0:
|
||||
plt.ylabel('')
|
||||
plt.setp(ax.get_yticklabels(), visible=False)
|
||||
else:
|
||||
ax.set_yticklabels(super_feats[super_feats_sort_indices])
|
||||
|
||||
xlimmax = 0.47
|
||||
xticks = [0.15, 0.35]
|
||||
plt.xlim((0, xlimmax))
|
||||
plt.xticks(xticks)
|
||||
plt.setp(ax.get_xticklabels(), visible=False)
|
||||
|
||||
# lower part of the figure, i.e. features from related work
|
||||
ax = plt.subplot(grs[(-len(additional_feats)):, trait])
|
||||
basedata = imp_df.loc[imp_df['T'] == trait]
|
||||
feat_importances = []
|
||||
for i in xrange(0, len(additional_feats)):
|
||||
logi = basedata.feature == additional_feats[additional_feats_sort_indices][i]
|
||||
feat_importances.append(basedata[logi]['feature importance'])
|
||||
bp = plt.boxplot(x=feat_importances, patch_artist=True, sym='', vert=False, whis='range',
|
||||
positions=np.arange(0,len(feat_importances)))
|
||||
|
||||
# asthetics
|
||||
for i in xrange(0, len(additional_feats)):
|
||||
bp['boxes'][i].set(color=dark_color)
|
||||
bp['boxes'][i].set(facecolor=light_color) #, alpha=0.5)
|
||||
bp['whiskers'][2 * i].set(color=dark_color, linestyle='-')
|
||||
bp['whiskers'][2 * i + 1].set(color=dark_color, linestyle='-')
|
||||
bp['caps'][2 * i].set(color=dark_color)
|
||||
bp['caps'][2 * i + 1].set(color=dark_color)
|
||||
bp['medians'][i].set(color=dark_color) #, linewidth=.1)
|
||||
|
||||
if not trait == 0:
|
||||
plt.ylabel('')
|
||||
plt.setp(ax.get_yticklabels(), visible=False)
|
||||
else:
|
||||
ax.set_yticklabels(additional_feats[additional_feats_sort_indices])
|
||||
plt.xlim((0, xlimmax))
|
||||
plt.xticks(xticks)
|
||||
if trait == 3:
|
||||
plt.xlabel(conf.medium_traitlabels[trait] + '\n\nFeature Importance')
|
||||
else:
|
||||
plt.xlabel(conf.medium_traitlabels[trait])
|
||||
|
||||
filename = conf.figure_folder + '/figure2.pdf'
|
||||
plt.savefig(filename, bbox_inches='tight')
|
||||
print filename.split('/')[-1], 'written.'
|
||||
plt.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# target file names - save table of F1 scores, feature importances and majority predictions there
|
||||
datapathI = conf.get_result_folder(conf.annotation_all) + '/f1s.csv' # F1 scores from each iteration
|
||||
datapathII = conf.get_result_folder(conf.annotation_all) + '/feature_importance.csv' # Feature importance from each iteration
|
||||
datapathIII = conf.get_result_folder(conf.annotation_all) + '/majority_predictions.csv' # Majority voting result for each participant over all iterations
|
||||
|
||||
if not os.path.exists(conf.figure_folder):
|
||||
os.mkdir(conf.figure_folder)
|
||||
|
||||
# if target files do not exist yet, create them
|
||||
if (not os.path.exists(datapathI)) or (not os.path.exists(datapathII)) or (not os.path.exists(datapathIII)):
|
||||
f1s = []
|
||||
feature_importances = []
|
||||
majority_predictions = []
|
||||
for trait in xrange(0, conf.n_traits):
|
||||
predictions = np.zeros((conf.n_participants, conf.max_n_iter),dtype=int)-1
|
||||
ground_truth = np.loadtxt(conf.binned_personality_file, delimiter=',', skiprows=1, usecols=(trait+1,))
|
||||
for si in xrange(0, conf.max_n_iter):
|
||||
filename = conf.get_result_filename(conf.annotation_all, trait, False, si, add_suffix=True)
|
||||
if os.path.exists(filename):
|
||||
data = np.load(filename)
|
||||
if (data['predictions'] > 0).all():
|
||||
assert data['f1'] == f1_score(ground_truth, data['predictions'], average='macro')
|
||||
f1s.append([data['f1'], conf.medium_traitlabels[trait]])
|
||||
else:
|
||||
# if there was no time window for a condition, like if shopping data only is evaluated,
|
||||
# the F1 score for each person without a single time window will be set to -1
|
||||
# but should not be used as such to compute the mean F1 score.
|
||||
# Thus, here the F1 score is re-computed on the relevant participants only.
|
||||
pr = data['predictions']
|
||||
pr = pr[pr > 0]
|
||||
|
||||
dt = ground_truth[pr > 0]
|
||||
|
||||
f1s.append([f1_score(dt, pr, average='macro'), conf.medium_traitlabels[trait]])
|
||||
|
||||
for outer_cv_i in xrange(0, 5): # number outer CV, not person anymore
|
||||
for fi in xrange(0, conf.max_n_feat):
|
||||
feature_importances.append([data['feature_importances'][outer_cv_i, fi], trait, gs.full_long_label_list[fi], fi])
|
||||
|
||||
predictions[:,si] = data['predictions']
|
||||
else:
|
||||
print 'did not find', filename
|
||||
|
||||
# compute majority voting for each participant over all iterations
|
||||
for p in xrange(0, conf.n_participants):
|
||||
(values, counts) = np.unique(predictions[p, predictions[p,:]>0], return_counts=True)
|
||||
ind = np.argmax(counts)
|
||||
majority_predictions.append([values[ind], p, conf.medium_traitlabels[trait]])
|
||||
|
||||
f1s_df = pns.DataFrame(data=f1s, columns=['F1', 'trait'])
|
||||
f1s_df.to_csv(datapathI)
|
||||
|
||||
imp_df = pns.DataFrame(data=feature_importances, columns=['feature importance', 'T', 'feature', 'feat_num'])
|
||||
imp_df.to_csv(datapathII)
|
||||
|
||||
majority_predictions_df = pns.DataFrame(data=majority_predictions, columns=['prediction','participant','trait'])
|
||||
majority_predictions_df.to_csv(datapathIII)
|
||||
|
||||
else:
|
||||
print 'No new results are collected as previous results were available. If you want to overwrite them, please delete the following files:'
|
||||
print datapathI
|
||||
print datapathII
|
||||
print datapathIII
|
||||
|
||||
f1s_df = pns.read_csv(datapathI)
|
||||
imp_df = pns.read_csv(datapathII)
|
||||
majority_predictions_df = pns.read_csv(datapathIII)
|
||||
|
||||
plot_weights() # Figure 2
|
101
06_baselines.py
Normal file
101
06_baselines.py
Normal file
|
@ -0,0 +1,101 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from config import conf
|
||||
import os, sys
|
||||
import pandas as pns
|
||||
from config import names as gs
|
||||
import getopt
|
||||
import matplotlib.gridspec as gridspec
|
||||
from sklearn.metrics import f1_score, accuracy_score
|
||||
|
||||
import seaborn as sns
|
||||
sns.set(style='whitegrid', color_codes=True)
|
||||
sns.set_context('poster')
|
||||
|
||||
dark_color = sns.xkcd_rgb['charcoal grey']
|
||||
light_color = sns.xkcd_rgb['cloudy blue']
|
||||
|
||||
max_n_feat = conf.max_n_feat
|
||||
m_iter = conf.max_n_iter
|
||||
|
||||
featurelabels = gs.full_long_label_list
|
||||
participant_ids = np.arange(0, conf.n_participants)
|
||||
|
||||
|
||||
def plot_overview():
|
||||
all_baselines.groupby(by=['trait', 'clf_name'])['F1'].mean().to_csv(conf.figure_folder +
|
||||
'/figure1.csv')
|
||||
print 'Figure1.csv written'
|
||||
|
||||
sns.set(font_scale=2.1)
|
||||
plt.figure(figsize=(20, 10))
|
||||
ax = plt.subplot(1,1,1)
|
||||
sns.barplot(x='trait', y='F1', hue='clf_name', data=all_baselines, capsize=.05, errwidth=3,
|
||||
linewidth=3, estimator=np.mean, edgecolor=dark_color,
|
||||
palette={'our classifier': sns.xkcd_rgb['windows blue'],
|
||||
'most frequent class': sns.xkcd_rgb['faded green'],
|
||||
'random guess':sns.xkcd_rgb['greyish brown'],
|
||||
'label permutation':sns.xkcd_rgb['dusky pink']
|
||||
}
|
||||
)
|
||||
plt.plot([-0.5,6.5], [0.33, 0.33], c=dark_color, linestyle='--', linewidth=3, label='theoretical chance level')
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
ax.legend([handles[1], handles[2], handles[3], handles[4], handles[0]], [labels[1], labels[2], labels[3], labels[4], labels[0]], fontsize=20)
|
||||
plt.xlabel('')
|
||||
plt.ylabel('F1 score', fontsize=20)
|
||||
plt.ylim((0, 0.55))
|
||||
filename = conf.figure_folder + '/figure1.pdf'
|
||||
plt.savefig(filename, bbox_inches='tight')
|
||||
plt.close()
|
||||
print 'wrote', filename.split('/')[-1]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# collect F1 scores for classifiers on all data from a file that was written by evaluation_single_context.py
|
||||
datapath = conf.get_result_folder(conf.annotation_all) + '/f1s.csv'
|
||||
if not os.path.exists(datapath):
|
||||
print 'could not find', datapath
|
||||
print 'consider (re-)running evaluation_single_context.py'
|
||||
sys.exit(1)
|
||||
our_classifier = pns.read_csv(datapath)
|
||||
our_classifier['clf_name'] = 'our classifier'
|
||||
|
||||
# baseline 1: guess the most frequent class from each training set that was written by train_baseline.py
|
||||
datapath = conf.result_folder + '/most_frequ_class_baseline.csv'
|
||||
if not os.path.exists(datapath):
|
||||
print 'could not find', datapath
|
||||
print 'consider (re-)running train_baseline.py'
|
||||
sys.exit(1)
|
||||
most_frequent_class_df = pns.read_csv(datapath)
|
||||
most_frequent_class_df['clf_name'] = 'most frequent class'
|
||||
|
||||
# compute all other baselines ad hoc
|
||||
collection = []
|
||||
for trait in xrange(0, conf.n_traits):
|
||||
# baseline 2: random guess
|
||||
truth = np.genfromtxt(conf.binned_personality_file, skip_header=1, usecols=(trait+1,), delimiter=',')
|
||||
for i in xrange(0, 100):
|
||||
rand_guess = np.random.randint(1, 4, conf.n_participants)
|
||||
f1 = f1_score(truth, rand_guess, average='macro')
|
||||
collection.append([f1, conf.medium_traitlabels[trait], i, 'random guess'])
|
||||
|
||||
# baseline 3: label permutation test
|
||||
# was computed using label_permutation_test.sh and written into results. ie. is just loaded here
|
||||
for si in xrange(0, m_iter):
|
||||
filename_rand = conf.get_result_filename(conf.annotation_all, trait, True, si, add_suffix=True)
|
||||
if os.path.exists(filename_rand):
|
||||
data = np.load(filename_rand)
|
||||
pr = data['predictions']
|
||||
dt = truth[pr > 0]
|
||||
pr = pr[pr > 0]
|
||||
f1 = f1_score(dt, pr, average='macro')
|
||||
collection.append([f1, conf.medium_traitlabels[trait], si, 'label permutation'])
|
||||
else:
|
||||
print 'did not find', filename_rand
|
||||
print 'consider (re-)running label_permutation_test.sh'
|
||||
sys.exit(1)
|
||||
|
||||
collectiondf = pns.DataFrame(data=collection,columns=['F1','trait','iteration','clf_name'])
|
||||
all_baselines = pns.concat([our_classifier, most_frequent_class_df, collectiondf])
|
||||
|
||||
plot_overview() # Figure 1
|
155
07_evaluation_across_contexts.py
Normal file
155
07_evaluation_across_contexts.py
Normal file
|
@ -0,0 +1,155 @@
|
|||
import numpy as np
|
||||
from config import conf
|
||||
import os, sys
|
||||
from config import names as gs
|
||||
import pandas as pd
|
||||
|
||||
truth = np.genfromtxt(conf.binned_personality_file, skip_header=1, usecols=xrange(1, conf.n_traits+1), delimiter=',')
|
||||
|
||||
# all comparisons to perform. Each has
|
||||
# a name,
|
||||
# two annotation values that determine if classifiers trained on all data or on specific subsets only will be examined;
|
||||
# names for both tasks to compare
|
||||
comparisons = dict({'split halves': [conf.annotation_all, conf.annotation_all, 'first half', 'second half'],
|
||||
'two ways': [conf.annotation_ways, conf.annotation_ways, 'way there', 'way back'],
|
||||
'way vs shop in general classifier': [conf.annotation_all, conf.annotation_all, 'both ways' ,'shop'],
|
||||
'way vs shop in specialised classifier': [conf.annotation_ways, conf.annotation_shop, 'both ways', 'shop'],
|
||||
'way in specialised classifier vs way in general classifier': [conf.annotation_ways, conf.annotation_all, 'both ways', 'both ways'],
|
||||
'shop in specialised classifier vs shop in general classifier': [conf.annotation_shop, conf.annotation_all, 'shop', 'shop']
|
||||
})
|
||||
|
||||
def get_majority_vote(predictions):
|
||||
if len(predictions) == 0:
|
||||
return -1
|
||||
(values, counts) = np.unique(predictions, return_counts=True)
|
||||
ind = np.argmax(counts)
|
||||
return values[ind]
|
||||
|
||||
def get_average_correlation(predA, predB, m_iter):
|
||||
"""
|
||||
:param predA: predictions for task A, n_participants x m_iter
|
||||
:param predB: predictions for task B, n_participants x m_iter
|
||||
:return:
|
||||
"""
|
||||
correlations = []
|
||||
for si in xrange(0, m_iter):
|
||||
if predB.ndim == 1:
|
||||
if np.sum(predA[:,si]) > 0:
|
||||
A = predA[:,si]
|
||||
B = predB
|
||||
consider = (A>0)
|
||||
A = A[consider]
|
||||
B = B[consider]
|
||||
else:
|
||||
continue
|
||||
else:
|
||||
if np.sum(predA[:,si]) > 0 and (np.sum(predB[:,si]) > 0):
|
||||
A = predA[:,si]
|
||||
B = predB[:,si]
|
||||
consider = (A>0) & (B>0)
|
||||
A = A[consider]
|
||||
B = B[consider]
|
||||
else:
|
||||
continue
|
||||
|
||||
correlation = np.corrcoef(np.array([A, B]))[0][1]
|
||||
correlations.append(correlation)
|
||||
|
||||
avg = np.tanh(np.mean(np.arctanh(np.array(correlations))))
|
||||
return avg
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# check if the output target folder already exists and create if not
|
||||
if not os.path.exists(conf.figure_folder):
|
||||
os.mkdir(conf.figure_folder)
|
||||
|
||||
# collect masks for each participant, annotation (all data, shop, way), window size and subset in question (e.g. first half, or way to the shop)
|
||||
# each mask is True for samples of a particular participant and subset; False for all others
|
||||
window_masks = []
|
||||
for wsi in xrange(0, len(conf.all_window_sizes)):
|
||||
x_file, y_file, id_file = conf.get_merged_feature_files(conf.all_window_sizes[wsi])
|
||||
|
||||
for annotation_value in conf.annotation_values:
|
||||
ids_ws = np.genfromtxt(id_file, delimiter=',', skip_header=1).astype(int)
|
||||
|
||||
if annotation_value == conf.annotation_shop:
|
||||
ids_ws = ids_ws[ids_ws[:, 1] == conf.time_window_annotation_shop, :]
|
||||
elif annotation_value == conf.annotation_ways:
|
||||
ids_ws = ids_ws[(ids_ws[:, 1] == conf.time_window_annotation_wayI) | (ids_ws[:, 1] == conf.time_window_annotation_wayII), :]
|
||||
|
||||
for p in xrange(0, conf.n_participants):
|
||||
ids_ws_p = ids_ws[(ids_ws[:, 0] == p), :]
|
||||
|
||||
window_masks.append([annotation_value, p, wsi, 'first half', ids_ws_p[:, 2] == conf.time_window_annotation_halfI])
|
||||
window_masks.append([annotation_value, p, wsi, 'second half', ids_ws_p[:, 2] == conf.time_window_annotation_halfII])
|
||||
|
||||
window_masks.append([annotation_value, p, wsi, 'way there', ids_ws_p[:, 1] == conf.time_window_annotation_wayI])
|
||||
window_masks.append([annotation_value, p, wsi, 'way back', ids_ws_p[:, 1] == conf.time_window_annotation_wayII])
|
||||
|
||||
window_masks.append([annotation_value, p, wsi, 'shop', ids_ws_p[:, 1] == conf.time_window_annotation_shop])
|
||||
window_masks.append([annotation_value, p, wsi, 'both ways', np.logical_or(ids_ws_p[:, 1] == conf.time_window_annotation_wayI,ids_ws_p[:, 1] == conf.time_window_annotation_wayII)])
|
||||
|
||||
window_masks_df = pd.DataFrame(window_masks, columns=['annotation', 'participant', 'window size index', 'subtask', 'mask'])
|
||||
|
||||
# collect predictions for each participant and each setting that is interesting for one of the comparisons
|
||||
# Results are directly written into figures/table1-5.csv
|
||||
with open(conf.figure_folder + '/table1-5.csv', 'w') as f:
|
||||
f.write('comparison')
|
||||
for trait in xrange(0, conf.n_traits):
|
||||
f.write(',' + conf.medium_traitlabels[trait])
|
||||
f.write('\n')
|
||||
|
||||
for comp_title, (annotation_value_I, annotation_value_II, subtaskI, subtaskII) in comparisons.items():
|
||||
f.write(comp_title)
|
||||
result_filename = conf.result_folder + '/predictions_' + comp_title.replace(' ','_') + '.npz'
|
||||
if not os.path.exists(result_filename):
|
||||
print 'computing data for', comp_title
|
||||
print 'Note taht this might take a while - if the script is run again, intermediate results will be available and speed up all computations.'
|
||||
|
||||
predictions_I = np.zeros((conf.n_participants, conf.n_traits, conf.max_n_iter), dtype=int)
|
||||
predictions_II = np.zeros((conf.n_participants, conf.n_traits, conf.max_n_iter), dtype=int)
|
||||
|
||||
for trait in xrange(0, conf.n_traits):
|
||||
for si in xrange(0, conf.max_n_iter):
|
||||
filenameI = conf.get_result_filename(annotation_value_I, trait, False, si, add_suffix=True)
|
||||
filenameII = conf.get_result_filename(annotation_value_II, trait, False, si, add_suffix=True)
|
||||
|
||||
if os.path.exists(filenameI) and os.path.exists(filenameII):
|
||||
dataI = np.load(filenameI)
|
||||
detailed_predictions_I = dataI['detailed_predictions']
|
||||
chosen_window_indices_I = dataI['chosen_window_indices']
|
||||
|
||||
dataII = np.load(filenameII)
|
||||
detailed_predictions_II = dataII['detailed_predictions']
|
||||
chosen_window_indices_II = dataII['chosen_window_indices']
|
||||
|
||||
for p, window_index_I, window_index_II, local_detailed_preds_I, local_detailed_preds_II in zip(xrange(0, conf.n_participants), chosen_window_indices_I, chosen_window_indices_II, detailed_predictions_I, detailed_predictions_II):
|
||||
maskI = window_masks_df[(window_masks_df.annotation == annotation_value_I) &
|
||||
(window_masks_df.participant == p) &
|
||||
(window_masks_df['window size index'] == window_index_I) &
|
||||
(window_masks_df.subtask == subtaskI)
|
||||
].as_matrix(columns=['mask'])[0][0]
|
||||
maskII = window_masks_df[(window_masks_df.annotation == annotation_value_II) &
|
||||
(window_masks_df.participant == p) &
|
||||
(window_masks_df['window size index'] == window_index_II) &
|
||||
(window_masks_df.subtask == subtaskII)
|
||||
].as_matrix(columns=['mask'])[0][0]
|
||||
|
||||
predictions_I[p, trait, si] = get_majority_vote(np.array(local_detailed_preds_I)[maskI])
|
||||
predictions_II[p, trait, si] = get_majority_vote(np.array(local_detailed_preds_II)[maskII])
|
||||
else:
|
||||
print 'did not find', filenameI, 'or', filenameII
|
||||
sys.exit(1)
|
||||
np.savez(result_filename, predictions_I=predictions_I, predictions_II=predictions_II)
|
||||
else:
|
||||
data = np.load(result_filename)
|
||||
predictions_I = data['predictions_I']
|
||||
predictions_II = data['predictions_II']
|
||||
|
||||
# predictions_I are predictions from one context, predictions_II is the other context
|
||||
# compute their average correlation and write it to file
|
||||
for t in xrange(0, conf.n_traits):
|
||||
corrI = get_average_correlation(predictions_I[:, t, :], predictions_II[:, t, :], 100)
|
||||
f.write(','+'%.2f'%corrI)
|
||||
f.write('\n')
|
99
08_descriptive.py
Normal file
99
08_descriptive.py
Normal file
|
@ -0,0 +1,99 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from config import names as gs
|
||||
from config import conf
|
||||
import sys
|
||||
import math
|
||||
import os
|
||||
|
||||
|
||||
def get_stats():
|
||||
annotation_times = np.genfromtxt(conf.annotation_path, delimiter=',', skip_header=1)[:, 1:]
|
||||
shop_duration = annotation_times[:, 1] - annotation_times[:, 0]
|
||||
print
|
||||
print 'Time spent in the shop:'
|
||||
print 'MEAN', np.mean(shop_duration/60.), 'min'
|
||||
print 'STD', np.std(shop_duration/60.), 'min'
|
||||
|
||||
|
||||
def get_feature_correlations():
|
||||
# find the window size that was most frequently chosen
|
||||
hist_sum = np.zeros((len(conf.all_window_sizes)), dtype=int)
|
||||
for trait in xrange(0, conf.n_traits):
|
||||
for si in xrange(0, 100):
|
||||
filename = conf.get_result_filename(conf.annotation_all, trait, False, si, add_suffix=True)
|
||||
if os.path.exists(filename):
|
||||
data = np.load(filename)
|
||||
chosen_window_indices = data['chosen_window_indices']
|
||||
hist, _ = np.histogram(chosen_window_indices, bins=np.arange(-0.5, len(conf.all_window_sizes), 1))
|
||||
hist_sum += hist
|
||||
else:
|
||||
print 'did not find', filename
|
||||
|
||||
ws = conf.all_window_sizes[np.argmax(hist_sum)]
|
||||
|
||||
# load features for the most frequently chosen time window
|
||||
x_file, y_file, id_file = conf.get_merged_feature_files(ws)
|
||||
x_ws = np.genfromtxt(x_file, delimiter=',', skip_header=1)
|
||||
ids_ws = np.genfromtxt(id_file, delimiter=',', skip_header=1).astype(int)[:,0]
|
||||
y = np.genfromtxt(conf.binned_personality_file, skip_header=1, usecols=xrange(1, conf.n_traits+1), delimiter=',')
|
||||
y_ws = np.genfromtxt(y_file, delimiter=',', skip_header=1).astype(int)
|
||||
|
||||
# compute average feature per person
|
||||
avg_x_ws = np.zeros((conf.n_participants, conf.max_n_feat))
|
||||
for p in xrange(0,conf.n_participants):
|
||||
avg_x_ws[p,:] = np.mean(x_ws[ids_ws == p, :], axis=0)
|
||||
|
||||
feature_correlations_avg = []
|
||||
for fi in xrange(0, conf.max_n_feat):
|
||||
C_avg = np.corrcoef(y.transpose(), avg_x_ws[:, fi])[-1][:-1]
|
||||
feature_correlations_avg.append(C_avg)
|
||||
|
||||
feature_correlations_avg = np.array(feature_correlations_avg)
|
||||
|
||||
# find the 5th to highest correlation for each trait and write them into a .tex table - see Table 4 in SI
|
||||
n = 15
|
||||
highest_correlated_features = []
|
||||
highest_correlated_features_lists = []
|
||||
highest_correlated_features_names = []
|
||||
for t in xrange(0, conf.n_traits):
|
||||
hcf = feature_correlations_avg[:,t].argsort()[-n:]
|
||||
locallist = []
|
||||
for f in hcf:
|
||||
if f not in highest_correlated_features:
|
||||
highest_correlated_features.append(f)
|
||||
highest_correlated_features_names.append(gs.full_long_label_list[f].lower())
|
||||
locallist.append(f)
|
||||
|
||||
highest_correlated_features_lists.append(locallist)
|
||||
|
||||
features = zip(highest_correlated_features_names, highest_correlated_features)
|
||||
highest_correlated_features = [y for (x,y) in sorted(features)]
|
||||
#highest_correlated_features.sort()
|
||||
|
||||
filename = conf.figure_folder + '/table4.tex'
|
||||
print len(highest_correlated_features)
|
||||
with open(filename, 'w') as f:
|
||||
f.write('feature&Neur.&Extr.&Open.&Agree.&Consc.&PCS&CEI')
|
||||
f.write('\\\\\n\hline\n')
|
||||
for fi in highest_correlated_features:
|
||||
f.write(gs.full_long_label_list[fi])
|
||||
for t in xrange(0, conf.n_traits):
|
||||
fc = feature_correlations_avg[fi,t]
|
||||
if math.isnan(fc):
|
||||
f.write('&-')
|
||||
elif fi in highest_correlated_features_lists[t]:
|
||||
f.write('&\\textbf{'+'%.2f}'%fc)
|
||||
else:
|
||||
f.write('&'+'%.2f'%fc)
|
||||
f.write('\\\\\n')
|
||||
print
|
||||
print filename, 'written'
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import os
|
||||
if not os.path.exists(conf.figure_folder):
|
||||
os.makedirs(conf.figure_folder)
|
||||
get_stats() # prints statistics on the time participants spent inside the shop
|
||||
get_feature_correlations() # Table 4
|
37
09_plot_ws_hist.py
Normal file
37
09_plot_ws_hist.py
Normal file
|
@ -0,0 +1,37 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn
|
||||
from config import conf
|
||||
import os
|
||||
|
||||
hist_sum = np.zeros((len(conf.all_window_sizes)), dtype=int)
|
||||
for trait in xrange(0, conf.n_traits):
|
||||
for si in xrange(0, 100):
|
||||
filename = conf.get_result_filename(conf.annotation_all, trait, False, si, add_suffix=True)
|
||||
if os.path.exists(filename):
|
||||
data = np.load(filename)
|
||||
chosen_window_indices = data['chosen_window_indices']
|
||||
hist, _ = np.histogram(chosen_window_indices, bins=np.arange(-0.5, len(conf.all_window_sizes), 1))
|
||||
hist_sum += hist
|
||||
else:
|
||||
print 'did not find', filename
|
||||
|
||||
hist_sum_sum = np.sum(hist_sum)
|
||||
|
||||
plt.figure()
|
||||
ax = plt.subplot(111)
|
||||
bars = ax.bar(conf.all_window_sizes, hist_sum/float(hist_sum_sum)*100, width=8, tick_label=[str(x) for x in conf.all_window_sizes])
|
||||
|
||||
for rect in bars:
|
||||
height = rect.get_height()
|
||||
ax.text(rect.get_x() + rect.get_width()/2., 1.01*height,
|
||||
'%d' % (height/100.*hist_sum_sum),
|
||||
ha='center', va='bottom')
|
||||
|
||||
# Hide the right and top spines
|
||||
ax.spines['right'].set_visible(False)
|
||||
ax.spines['top'].set_visible(False)
|
||||
plt.xlabel('window size in s')
|
||||
plt.ylabel('percentage')
|
||||
plt.savefig('figures/ws_hist.pdf')
|
||||
plt.close()
|
47
README.md
47
README.md
|
@ -25,27 +25,48 @@ reproducing the paper results step by step:
|
|||
1. __Extract features from raw gaze data__:
|
||||
`python 00_compute_features.py` to compute gaze features for all participants
|
||||
Once extracted, the features are stored in `features/ParticipantXX/window_features_YY.npy` where XX is the participant number and YY the length of the sliding window in seconds.
|
||||
|
||||
|
||||
2. __Train random forest classifiers__
|
||||
`./01 train_classifiers.sh` to reproduce the evaluation setting described in the paper in which each classifier was trained 100 times.
|
||||
`./02_train_specialized_classifiers.sh` to train specialized classifiers on parts of the data (specifically on data from inside the shop or on the way).
|
||||
`./01 train_classifiers.sh` to reproduce the evaluation setting described in the paper in which each classifier was trained 100 times.
|
||||
`./02_train_specialized_classifiers.sh` to train specialized classifiers on parts of the data (specifically on data from inside the shop or on the way).
|
||||
|
||||
If the scripts cannot be executed, you might not have the right access permissions to do so. On Linux, you can try `chmod +x 01_train_classifiers.sh`,`chmod +x 02_train_specialized_classifiers.sh` and `chmod +x 03_label_permutation_test.sh` (see below for when/how to use the last script).
|
||||
If the scripts cannot be executed, you might not have the right access permissions to do so. On Linux, you can try `chmod +x 01_train_classifiers.sh`,`chmod +x 02_train_specialized_classifiers.sh` and `chmod +x 03_label_permutation_test.sh` (see below for when/how to use the last script).
|
||||
|
||||
In case you want to call the script differently, e.g. to speed-up the computation or try with different parameters, you can pass the following arguments to `classifiers.train_classifier`:
|
||||
`-t` trait index between 0 and 6
|
||||
`-l` lowest number of repetitions, e.g. 0
|
||||
`-m` max number of repetitions, e.g. 100
|
||||
`-a` using partial data only: 0 (all data), 1 (way data), 2(shop data)
|
||||
In case you want to call the script differently, e.g. to speed-up the computation or try with different parameters, you can pass the following arguments to `classifiers.train_classifier`:
|
||||
`-t` trait index between 0 and 6
|
||||
`-l` lowest number of repetitions, e.g. 0
|
||||
`-m` max number of repetitions, e.g. 100
|
||||
`-a` using partial data only: 0 (all data), 1 (way data), 2(shop data)
|
||||
|
||||
In case of performance issues, it might be useful to check `_conf.py` and change `max_n_jobs` to restrict the number of jobs (i.e. threads) running in parallel.
|
||||
In case of performance issues, it might be useful to check `_conf.py` and change `max_n_jobs` to restrict the number of jobs (i.e. threads) running in parallel.
|
||||
|
||||
The results will be saved in `results/A0` for all data, `results/A1` for way data only and `results/A2` for data inside a shop. Each file is named `TTT_XXX.npz`, where TTT is the abbreviation of the personality trait (`O`,`C`,`E`,`A`,`N` for the Big Five and `CEI` or `PCS` for the two curiosity measures). XXX enumerates the classifiers (remember that we always train 100 classifiers for evaluation because there is some randomness involved in the training process).
|
||||
The results will be saved in `results/A0` for all data, `results/A1` for way data only and `results/A2` for data inside a shop. Each file is named `TTT_XXX.npz`, where TTT is the abbreviation of the personality trait (`O`,`C`,`E`,`A`,`N` for the Big Five and `CEI` or `PCS` for the two curiosity measures). XXX enumerates the classifiers (remember that we always train 100 classifiers for evaluation because there is some randomness involved in the training process).
|
||||
|
||||
3. __Evaluate Baselines__
|
||||
* To train a classifier that always predicts the most frequent personality score range from its current training set, please execute `python 03_train_baseline.py`
|
||||
* To train classifiers on permuted labels, i.e. perform the so-called label permutation test, please execute `./04_label_permutation_test.sh`
|
||||
3. __Train baselines__
|
||||
* To train a classifier that always predicts the most frequent personality score range from its current training set, please execute `python 03_train_baseline.py`
|
||||
* To train classifiers on permuted labels, i.e. perform the so-called label permutation test, please execute `./04_label_permutation_test.sh`
|
||||
|
||||
|
||||
4. __Performance analysis__
|
||||
* Run `python 05_plot_weights.py` to extract feature importance scores. These scores will be visualized in `figures/figure2.pdf` which corresponds to Figure 2 in the paper and `figures/table2.tex` which is shown in Table 2 in the supplementary information.
|
||||
(additionally this step computes F1 scores which are required for the next step, so do not skip it)
|
||||
* The results obtained from both baselines will be written to disk and read once you execute `python 06_baselines.py`.
|
||||
A figure illustrating the actual classifiers' performance along with the random results will be written to `figures/figure1.pdf` as well as `figures/figure1.csv` and correspond to Figure 1 in the paper.
|
||||
|
||||
|
||||
5. __Context comparison__
|
||||
`python 07_evaluation_across_contexts.py` to compute the average correlation coefficients between predictions based on data from different contexts. The table with all coefficients will be written to `figures/table1-5.csv` which can be found in Table 1 and Table 5 in supplementary information.
|
||||
If (some) files in the results folder are missing, try re-running all one of the bash (\*.sh) scripts again.
|
||||
|
||||
6. __Descriptive analysis__
|
||||
`python 08_descriptive.py` to compute the correlation between each participant's average feature for the most frequently chosen time window and their personality score range. Results are written to four files `figures/table4-1.tex`,`figures/table4-2.tex`,`figures/table4-3.tex`,`figures/table4-4.tex` and are shown together in Table 4 in the supplementary information.
|
||||
|
||||
7. __Window Size Histogram__
|
||||
`python 09_plot_ws_hist.py` to plot a histogram of window sizes chosen during the nested cross validation routine to `figures/ws_hist.pdf`.
|
||||
|
||||
All these scripts write intermediate results to disk, i.e. if you start a script a second time, it will be much faster - but the first run can take some time, e.g. up to 8 hours to train classifiers for one context on a 16 core machine; 1 hour to compute correlations between contexts.
|
||||
|
||||
## Citation
|
||||
If you want to cite this project, please use the following Bibtex format:
|
||||
|
||||
|
|
Loading…
Reference in a new issue