feature extraction code
This commit is contained in:
parent
a20084fefa
commit
cebde1be17
103
00_compute_features.py
Normal file
103
00_compute_features.py
Normal file
|
@ -0,0 +1,103 @@
|
|||
import numpy as np
|
||||
import os
|
||||
from config import conf as conf
|
||||
from featureExtraction import gaze_analysis as ga
|
||||
import threading
|
||||
import getopt
|
||||
import sys
|
||||
from config import names as gs
|
||||
|
||||
def compute_sliding_window_features(participant, ws, gazeAnalysis_instance):
|
||||
"""
|
||||
calls the gazeAnalysis instance it was given, calls it to get features and saves those to file
|
||||
"""
|
||||
window_features, window_times = gazeAnalysis_instance.get_window_features(ws, conf.get_step_size(ws))
|
||||
np.save(conf.get_window_features_file(participant, ws), window_features)
|
||||
np.save(conf.get_window_times_file(participant, ws), window_times)
|
||||
|
||||
if __name__ == "__main__":
|
||||
for p in xrange(0,conf.n_participants):
|
||||
threads = [] # one thread per time window will be used and collected in this list
|
||||
|
||||
# create data folder, plus one subfolder for participant p
|
||||
if not os.path.exists(conf.get_feature_folder(p)):
|
||||
os.makedirs(conf.get_feature_folder(p))
|
||||
|
||||
# make sure all relevant raw data files exist in the right folder
|
||||
gaze_file = conf.get_data_folder(p) + '/gaze_positions.csv'
|
||||
pupil_diameter_file = conf.get_data_folder(p) + '/pupil_diameter.csv'
|
||||
events_file = conf.get_data_folder(p) + '/events.csv'
|
||||
assert os.path.exists(gaze_file) and os.path.exists(pupil_diameter_file) and os.path.exists(events_file)
|
||||
|
||||
# load relevant data
|
||||
gaze = np.genfromtxt(gaze_file, delimiter=',', skip_header=1)
|
||||
pupil_diameter = np.genfromtxt(pupil_diameter_file, delimiter=',', skip_header=1)
|
||||
events = np.genfromtxt(events_file, delimiter=',', skip_header=1, dtype=str)
|
||||
|
||||
# create instance of gazeAnalysis class that will be used for feature extraction
|
||||
# this already does some initial computation that will be useful for all window sizes:
|
||||
extractor = ga.gazeAnalysis(gaze, conf.fixation_radius_threshold, conf.fixation_duration_threshold,
|
||||
conf.saccade_min_velocity, conf.max_saccade_duration,
|
||||
pupil_diameter=pupil_diameter, event_strings=events)
|
||||
|
||||
# compute sliding window features by creating one thread per window size
|
||||
for window_size in conf.all_window_sizes:
|
||||
if not os.path.exists(conf.get_window_features_file(p, window_size)):
|
||||
thread = threading.Thread(target=compute_sliding_window_features, args=(p, window_size, extractor))
|
||||
thread.start()
|
||||
threads.append(thread)
|
||||
|
||||
for t in threads:
|
||||
t.join()
|
||||
|
||||
print 'finished all features for participant', p
|
||||
|
||||
# Merge the features from all participants into three files per window_size:
|
||||
# merged_features includes all features
|
||||
# merged_traits contains the ground truth personality score ranges
|
||||
# merged_ids contains the participant number and context (way, shop, half of the recording)
|
||||
|
||||
# load ground truth from info folder:
|
||||
binned_personality = np.genfromtxt(conf.binned_personality_file, delimiter=',', skip_header=1)
|
||||
trait_labels = np.loadtxt(conf.binned_personality_file, delimiter=',', dtype=str)[0,:]
|
||||
annotation = np.genfromtxt(conf.annotation_path, delimiter=',', skip_header=1)
|
||||
|
||||
for window_size in conf.all_window_sizes:
|
||||
print 'merging window size', window_size
|
||||
|
||||
windowfeats_subtask_all = []
|
||||
windowfeats_subtask_ids = []
|
||||
windowfeats_subtask_all_y = []
|
||||
|
||||
for p in xrange(0, conf.n_participants):
|
||||
featfilename = conf.get_window_features_file(p, window_size)
|
||||
timesfilename = conf.get_window_times_file(p, window_size)
|
||||
if os.path.exists(featfilename) and os.path.exists(timesfilename):
|
||||
data = np.load(featfilename).tolist()
|
||||
windowfeats_subtask_all.extend(data)
|
||||
windowfeats_subtask_all_y.extend([binned_personality[p, 1:]] * len(data))
|
||||
|
||||
times = np.load(timesfilename)[:, 2:]
|
||||
ann = annotation[p,1:]
|
||||
|
||||
ids_annotation = np.zeros((len(data), 3), dtype=int) # person, way/shop, half
|
||||
ids_annotation[:,0] = p
|
||||
ids_annotation[(times[:,1] < ann[0]),1] = conf.time_window_annotation_wayI
|
||||
ids_annotation[(times[:,0] > ann[0]) & (times[:,1] < ann[1]),1] = conf.time_window_annotation_shop
|
||||
ids_annotation[(times[:,0] > ann[1]),1] = conf.time_window_annotation_wayII
|
||||
ids_annotation[:(len(data)/2), 2] = conf.time_window_annotation_halfI
|
||||
ids_annotation[(len(data)/2):, 2] = conf.time_window_annotation_halfII
|
||||
|
||||
windowfeats_subtask_ids.extend(ids_annotation.tolist())
|
||||
else:
|
||||
print 'did not find ', featfilename
|
||||
sys.exit(1)
|
||||
|
||||
ids = np.array(windowfeats_subtask_ids)
|
||||
x = np.array(windowfeats_subtask_all, dtype=float)
|
||||
y = np.array(windowfeats_subtask_all_y)
|
||||
f1, f2, f3 = conf.get_merged_feature_files(window_size)
|
||||
|
||||
np.savetxt(f1, x, delimiter=',', header=','.join(gs.full_long_label_list), comments='')
|
||||
np.savetxt(f2, y, delimiter=',', header=','.join(trait_labels), comments='')
|
||||
np.savetxt(f3, ids, delimiter=',', header='Participant ID', comments='')
|
11
README.md
11
README.md
|
@ -1,8 +1,7 @@
|
|||
# Eye movements during everyday behavior predict personality traits
|
||||
*Sabrina Hoppe, Tobias Loetscher, Stephanie Morey and Andreas Bulling*
|
||||
|
||||
This repository provides all data used for the publication [in Frontiers in Human Neuroscience](https://dx.doi.org/10.3389/fnhum.2018.00105).
|
||||
Code is coming soon!
|
||||
This repository provides all data and code used for the publication [in Frontiers in Human Neuroscience](https://dx.doi.org/10.3389/fnhum.2018.00105).
|
||||
|
||||
## Dataset
|
||||
* Gaze data recorded at 60Hz from 42 participants is stored in `data/ParticipantXX`.
|
||||
|
@ -20,6 +19,14 @@ Code is coming soon!
|
|||
|
||||
* Timestamps indicating the times when participants entered and left the shop are given in `info/annotation.csv` in seconds.
|
||||
|
||||
|
||||
## Code
|
||||
reproducing the paper results step by step:
|
||||
1. __Extract features from raw gaze data__:
|
||||
`python compute_features.py` to compute gaze features for all participants
|
||||
Once extracted, the features are stored in `features/ParticipantXX/window_features_YY.npy` where XX is the participant number and YY the length of the sliding window in seconds.
|
||||
|
||||
|
||||
## Citation
|
||||
If you want to cite this project, please use the following Bibtex format:
|
||||
|
||||
|
|
1
__init__.py
Normal file
1
__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
|
0
config/__init__.py
Normal file
0
config/__init__.py
Normal file
97
config/conf.py
Normal file
97
config/conf.py
Normal file
|
@ -0,0 +1,97 @@
|
|||
import numpy as np
|
||||
|
||||
# global parameters
|
||||
n_participants = 42
|
||||
n_traits = 7
|
||||
max_n_feat = 207
|
||||
max_n_iter = 100
|
||||
all_window_sizes = [5, 15, 30, 45, 60, 75, 90, 105, 120, 135]
|
||||
all_shop_window_sizes = [5, 15] # at least 3/4 of the people have a time window in these times
|
||||
|
||||
# cross validation paramters
|
||||
n_inner_folds = 3
|
||||
n_outer_folds = 5
|
||||
|
||||
# Random Forest Parameters
|
||||
tree_max_features = 15
|
||||
tree_max_depth = 5
|
||||
n_estimators = 100
|
||||
max_n_jobs = 5
|
||||
|
||||
# given a window size, determine step size correctly for even and odd numbers
|
||||
def get_step_size(window_size):
|
||||
step_size = window_size / 2.0
|
||||
if step_size * 10 % 2 == 0:
|
||||
step_size = int(step_size)
|
||||
return step_size
|
||||
|
||||
# relative paths
|
||||
data_folder = 'data'
|
||||
info_folder = 'info'
|
||||
feature_folder = 'features'
|
||||
result_folder = 'results'
|
||||
figure_folder = 'figures'
|
||||
annotation_path = info_folder + '/annotation.csv'
|
||||
binned_personality_file = info_folder + '/binned_personality.csv'
|
||||
personality_sex_age_file = info_folder + '/personality_sex_age.csv'
|
||||
|
||||
# load the personality trait names from file and map them to abbreviations
|
||||
traitlabels = np.loadtxt(binned_personality_file, delimiter=',', dtype=str)[0, 1:]
|
||||
def get_abbr(s):
|
||||
return ''.join(item[0] for item in s.split() if item[0].isupper())
|
||||
medium_traitlabels = [get_abbr(s) if (" " in s) else s for s in traitlabels]
|
||||
short_traitlabels = [''.join(item[0] for item in tl.split() if item[0].isupper()) for tl in traitlabels]
|
||||
|
||||
|
||||
# dynamically create relative paths for result files to create
|
||||
def get_result_folder(annotation_val):
|
||||
return result_folder + '/A' + str(annotation_val)
|
||||
|
||||
def get_result_filename(annotation_val, trait, shuffle_labels, i, add_suffix=False):
|
||||
filename = get_result_folder(annotation_val) + '/' + short_traitlabels[trait]
|
||||
if shuffle_labels:
|
||||
filename += '_rnd'
|
||||
filename += '_' + str(i).zfill(3)
|
||||
if add_suffix:
|
||||
filename += '.npz'
|
||||
return filename
|
||||
|
||||
def get_feature_folder(participant):
|
||||
return feature_folder + '/Participant' + str(participant).zfill(2)
|
||||
|
||||
def get_merged_feature_files(window_size):
|
||||
return feature_folder + '/merged_features_' + str(window_size) + '.csv', feature_folder + '/merged_traits_' + str(window_size) + '.csv', feature_folder + '/merged_ids_' + str(window_size) + '.csv'
|
||||
|
||||
def get_data_folder(participant):
|
||||
return data_folder + '/Participant' + str(participant).zfill(2)
|
||||
|
||||
def get_window_times_file(participant, window_size):
|
||||
return get_feature_folder(participant) + "/window_times_" + str(window_size) + '.npy'
|
||||
|
||||
def get_window_features_file(participant, window_size):
|
||||
return get_feature_folder(participant) + "/window_features_" + str(window_size) + '.npy'
|
||||
|
||||
def get_overall_features_file(participant):
|
||||
return get_feature_folder(participant) + "/overall_features.npy"
|
||||
|
||||
|
||||
# parameters for fixation/saccade detection
|
||||
fixation_radius_threshold = 0.025
|
||||
fixation_duration_threshold = 0.1
|
||||
saccade_min_velocity = 2
|
||||
max_saccade_duration = 0.5
|
||||
|
||||
# annotation constants (as given as arguments to train_classifier, and as used for file names in result_folder)
|
||||
annotation_all = 0
|
||||
annotation_ways = 1
|
||||
annotation_shop = 2
|
||||
annotation_values = [annotation_all, annotation_ways, annotation_shop]
|
||||
|
||||
# annotations used in merged_ids_* files in the feature_folder
|
||||
# column 1
|
||||
time_window_annotation_wayI = 1
|
||||
time_window_annotation_shop = 2
|
||||
time_window_annotation_wayII = 3
|
||||
# column 2
|
||||
time_window_annotation_halfI = 1
|
||||
time_window_annotation_halfII = 2
|
160
config/names.py
Normal file
160
config/names.py
Normal file
|
@ -0,0 +1,160 @@
|
|||
fixations_list_labels = ['mean x', 'mean y',
|
||||
'var x', 'var y',
|
||||
't start', 't end',
|
||||
'start index', 'end index',
|
||||
'mean diameter', 'var diameter',
|
||||
'mean successive angles', 'var successive angles'
|
||||
]
|
||||
fix_mean_x_i = 0
|
||||
fix_mean_y_i = 1
|
||||
fix_var_x_i = 2
|
||||
fix_var_y_i = 3
|
||||
fix_start_t_i = 4
|
||||
fix_end_t_i = 5
|
||||
fix_start_index_i = 6
|
||||
fix_end_index_i = 7
|
||||
fix_mean_diam_i = 8
|
||||
fix_var_diam_i = 9
|
||||
fix_mean_succ_angles = 10
|
||||
fix_var_succ_angles = 11
|
||||
|
||||
saccades_list_labels = ['start x', 'start y',
|
||||
'end x', 'end y',
|
||||
'angle',
|
||||
't start', 't end',
|
||||
'start index', 'end index',
|
||||
'mean diameter', 'var diameter',
|
||||
'peak velocity', 'amplitude',
|
||||
]
|
||||
|
||||
sacc_start_x_i = 0
|
||||
sacc_start_y_i = 1
|
||||
sacc_end_x_i = 2
|
||||
sacc_end_y_i = 3
|
||||
sacc_angle_i = 4
|
||||
sacc_t_start_i = 5
|
||||
sacc_t_end_i = 6
|
||||
sacc_start_index_i = 7
|
||||
sacc_end_index_i = 8
|
||||
sacc_mean_diam_i = 9
|
||||
sacc_var_diam_i = 10
|
||||
sacc_peak_vel_i = 11
|
||||
sacc_amplitude_i = 12
|
||||
|
||||
blink_list_labels = ['t start', 't end', 'start index', 'end index']
|
||||
|
||||
blink_start_t_i = 0
|
||||
blink_end_ti_i = 1
|
||||
blink_start_index_i = 2
|
||||
blink_end_index_i = 3
|
||||
|
||||
event_feature_labels = ['fixation rate', 'saccade rate', # 0 1
|
||||
'small sacc. rate', 'large sacc. rate', 'positive sacc. rate', 'negative sacc. rate', # 2 3 4 5
|
||||
'ratio sacc - fix', # 6
|
||||
'ratio small sacc', 'ratio large sacc', 'ratio right sacc', 'ratio left sacc', # 7 8 9 10
|
||||
'mean sacc amplitude', 'var sacc amplitude', 'min sacc amplitude', 'max sacc amplitude', #11 12 13 14
|
||||
'mean peak velocity', 'var peak velocity', 'min peak velocity', 'max peak velocity', # 15 16 17 18
|
||||
'mean mean diameter sacc', 'var mean diameter sacc', 'mean var diameter sacc', # 19 20 21 22
|
||||
'var var diameter sacc',
|
||||
'mean fix duration', 'var fix duration', 'min fix duration', 'max fix duration', # 23 24 25 26
|
||||
'dwelling time',
|
||||
'mean mean subsequent angle', 'var mean subsequent angle', 'mean var subsequent angle', 'var var subsequent angle',
|
||||
'mean var x', 'mean var y', 'var var x', 'var var y', # 27 28 29 30
|
||||
'mean mean diameter fix', 'var mean diameter fix', 'mean var diameter fix', 'var var diameter fix', # 31 32 33 34
|
||||
'mean blink duration', 'var blink duration', 'min blink duration', 'max blink duration', # 35 36 37 38
|
||||
'blink rate' # 39
|
||||
]
|
||||
|
||||
event_feature_labels_long = ['fixation rate', 'saccade rate', # 0 1
|
||||
'small saccade rate', 'large saccade rate', 'positive saccade rate', 'negative saccade rate', # 2 3 4 5
|
||||
'saccade:fixation ratio', # 6
|
||||
'ratio of small saccades', 'ratio of large saccades', 'ratio of right saccades', 'ratio of left saccades', # 7 8 9 10
|
||||
'mean saccade amplitude', 'var saccade amplitude', 'min saccade amplitude', 'max saccade amplitude', #11 12 13 14
|
||||
'mean saccadic peak velocity', 'var saccadic peak velocity', 'min saccadic peak velocity', 'max saccadic peak velocity', # 15 16 17 18
|
||||
'mean of the mean pupil diameter during saccades', 'var of the mean pupil diameter during saccades',
|
||||
'mean of the var pupil diameter during saccades', 'var of the var pupil diameter during saccades', # 19 20 21 22
|
||||
'mean fixation duration', 'var fixation duration', 'min fixation duration', 'max fixation duration', # 23 24 25 26
|
||||
'dwelling time',
|
||||
'mean of the mean of subsequent angles', 'var of the mean of subsequent angles',
|
||||
'mean of the var of subsequent angles', 'var of the var of subsequent angles',
|
||||
'mean of the var of x', 'mean of the var of y', 'var of the var of x', 'var of the var of y', # 27 28 29 30
|
||||
'mean of the mean pupil diameter during fixations', 'var of the mean pupil diameter during fixations',
|
||||
'mean of the var pupil diameter during fixations', 'var of the var pupil diameter during fixations', # 31 32 33 34
|
||||
'mean blink duration', 'var blink duration', 'min blink duration', 'max blink duration', # 35 36 37 38
|
||||
'blink rate' # 39
|
||||
]
|
||||
|
||||
def get_wordbook_feature_labels(movement_abbreviation):
|
||||
return [movement_abbreviation + s + ' WB' + str(n) for n in [1, 2, 3, 4] for s in ['>0', 'max', 'min', 'arg max', 'arg min', 'range', 'mean', 'var']]
|
||||
|
||||
def get_wordbook_feature_labels_long(movement_abbreviation):
|
||||
return [s1 + str(n) + '-gram ' + movement_abbreviation + s2 for n in [1, 2, 3, 4]
|
||||
for (s1, s2) in [('number of different ', ' movements'),
|
||||
('max frequency ', ' movements'),
|
||||
('min frequency ', ' movements'),
|
||||
('most frequent ', ' movement'),
|
||||
('least frequent ', ' movement'),
|
||||
('range of frequencies of ', ' movements'),
|
||||
('mean frequency of ', ' movements'),
|
||||
('var frequency of ', ' movements')
|
||||
]]
|
||||
|
||||
position_feature_labels = ['mean x', 'mean y', 'mean diameter',
|
||||
'min x', 'min y', 'min diameter',
|
||||
'max x', 'max y', 'max diameter',
|
||||
'min-max x', 'min-max y', 'min-max diameter',
|
||||
'std x', 'std y', 'std diameter',
|
||||
'median x', 'median y', 'median diameter',
|
||||
'1st quart x', '1st quart y', '1st quart diameter',
|
||||
'3rd quart x', '3rd quart y', '3rd quart diameter',
|
||||
'IQR x', 'IQR y', 'IQR diameter',
|
||||
'mean abs diff x', 'mean abs diff y', 'mean abs diff diameter',
|
||||
'mean diff x', 'mean diff y', 'mean diff diameter',
|
||||
'mean subsequent angle'
|
||||
]
|
||||
|
||||
position_feature_labels_long = ['mean x', 'mean y', 'mean pupil diameter',
|
||||
'minimum x', 'minimum y', 'minimum pupil diameter',
|
||||
'maximum x', 'maximum y', 'maximum pupil diameter',
|
||||
'range x', 'range y', 'range pupil diameter',
|
||||
'std x', 'std y', 'std pupil diameter',
|
||||
'median x', 'median y', 'median pupil diameter',
|
||||
'1st quartile x', '1st quartile y', '1st quartile pupil diameter',
|
||||
'3rd quartile x', '3rd quartile y', '3rd quartile pupil diameter',
|
||||
'inter quartile range x', 'inter quartile range y', 'inter quartile range pupil diameter',
|
||||
'mean difference of subsequent x', 'mean difference of subsequent y', 'mean difference of subsequent pupil diameters',
|
||||
'mean diff x', 'mean diff y', 'mean diff pupil diameter',
|
||||
'mean subsequent angle'
|
||||
]
|
||||
|
||||
heatmap_feature_labels = ['heatmap_'+str(i).zfill(2) for i in xrange(0, 64)]
|
||||
heatmap_feature_labels_long = ['heatmap cell '+str(i).zfill(2) for i in xrange(0, 64)]
|
||||
|
||||
full_label_list = event_feature_labels + heatmap_feature_labels + position_feature_labels + \
|
||||
get_wordbook_feature_labels('sacc.') + get_wordbook_feature_labels('SF')
|
||||
|
||||
full_long_label_list = event_feature_labels_long + heatmap_feature_labels_long + position_feature_labels_long + \
|
||||
get_wordbook_feature_labels_long('sacc.') + get_wordbook_feature_labels_long('SF')
|
||||
|
||||
|
||||
sacc_dictionary = ['A', 'B', 'C', 'R', 'E', 'F', 'G', 'D', 'H', 'J', 'K', 'L', 'M', 'N', 'O', 'U', 'u', 'b', 'r', 'f',
|
||||
'd', 'j', 'l', 'n']
|
||||
sacc_bins_two = [a+b for a in sacc_dictionary for b in sacc_dictionary]
|
||||
sacc_bins_three = [a+b+c for a in sacc_dictionary for b in sacc_dictionary for c in sacc_dictionary]
|
||||
sacc_bins_four = [a+b+c+d for a in sacc_dictionary for b in sacc_dictionary for c in sacc_dictionary for d in sacc_dictionary]
|
||||
sacc_bins = [sacc_dictionary, sacc_bins_two, sacc_bins_three, sacc_bins_four]
|
||||
|
||||
saccFix_dictionary = ['S_lu', 'S_ld', 'S_lr', 'S_ll', 'S_su', 'S_sd', 'S_sr', 'S_sl', 'F_l', 'F_s']
|
||||
saccFix_bins_two = [a+b for a in saccFix_dictionary for b in saccFix_dictionary]
|
||||
saccFix_bins_three = [a+b+c for a in saccFix_dictionary for b in saccFix_dictionary for c in saccFix_dictionary]
|
||||
saccFix_bins_four = [a+b+c+d for a in saccFix_dictionary for b in saccFix_dictionary for c in saccFix_dictionary for d in saccFix_dictionary]
|
||||
saccFix_bins = [saccFix_dictionary, saccFix_bins_two, saccFix_bins_three, saccFix_bins_four]
|
||||
|
||||
def write_pami_feature_labels_to_file(targetfile):
|
||||
f = open(targetfile, 'w') # creates if it does not exist
|
||||
f.write(',short,long\n')
|
||||
i = 0
|
||||
for item1, item2 in zip(full_label_list, full_long_label_list):
|
||||
f.write(str(i) + ',' + item1 + ',' + item2 + '\n')
|
||||
i += 1
|
||||
f.close()
|
0
featureExtraction/__init__.py
Normal file
0
featureExtraction/__init__.py
Normal file
327
featureExtraction/event_detection.py
Normal file
327
featureExtraction/event_detection.py
Normal file
|
@ -0,0 +1,327 @@
|
|||
import numpy as np
|
||||
import sys
|
||||
import math
|
||||
from config import names as gs
|
||||
|
||||
|
||||
def get_fixation_list(gaze, errors, xi, yi, ti, fixation_radius_threshold, fixation_duration_threshold, pupil_diameter):
|
||||
n, m = gaze.shape
|
||||
fixations = []
|
||||
fixation = [] # single fixation, to be appended to fixations
|
||||
counter = 0 # number of points in the fixation
|
||||
sumx = 0 # used to compute the center of a fixation in x and y direction
|
||||
sumy = 0
|
||||
distance = 0 # captures the distance of a current sample from the fixation center
|
||||
i = 0 # iterates through the gaze samples
|
||||
|
||||
while i < n - 1:
|
||||
x = gaze[i, xi]
|
||||
y = gaze[i, yi]
|
||||
|
||||
if counter == 0:
|
||||
# ignore erroneous samples before a fixation
|
||||
if errors[i]:
|
||||
i += 1
|
||||
continue
|
||||
centerx = x
|
||||
centery = y
|
||||
else:
|
||||
centerx = np.true_divide(sumx, counter)
|
||||
centery = np.true_divide(sumy, counter)
|
||||
|
||||
if not errors[i]: # only update distance if the current sample is not erroneous
|
||||
distance = np.sqrt((x - centerx) * (x - centerx) + (y - centery) * (y - centery))
|
||||
|
||||
if distance > fixation_radius_threshold: # start new fixation
|
||||
if gaze[(i - 1), ti] - gaze[(i - counter), ti] >= fixation_duration_threshold:
|
||||
start_index = i - counter + 1
|
||||
end_index = i - 1 - 1
|
||||
|
||||
# discard fixations with more than 50% erroneous samples
|
||||
percentage_error = np.sum(errors[start_index:(end_index + 1)]) / float(end_index - start_index)
|
||||
if percentage_error >= 0.5:
|
||||
if errors[i]:
|
||||
i += 1
|
||||
counter = 0
|
||||
else:
|
||||
counter = 1
|
||||
sumx = x
|
||||
sumy = y
|
||||
continue
|
||||
|
||||
gaze_indices = np.arange(start_index, end_index+1)[np.logical_not(errors[start_index:(end_index + 1)])]
|
||||
|
||||
start_index = gaze_indices[0]
|
||||
end_index = gaze_indices[-1]
|
||||
|
||||
gazex = gaze[start_index:(end_index + 1), xi][np.logical_not(errors[start_index:(end_index + 1)])]
|
||||
gazey = gaze[start_index:(end_index + 1), yi][np.logical_not(errors[start_index:(end_index + 1)])]
|
||||
gazet = gaze[start_index:(end_index + 1), ti][np.logical_not(errors[start_index:(end_index + 1)])]
|
||||
|
||||
# extract fixation characteristics
|
||||
fixation.append(np.mean(gazex)) # 0.-1. mean x,y
|
||||
fixation.append(np.mean(gazey))
|
||||
fixation.append(np.var(gazex)) # 2-3. var x, y
|
||||
fixation.append(np.var(gazey))
|
||||
fixation.append(gazet[0]) # 4-5. t_start, t_end
|
||||
fixation.append(gazet[-1])
|
||||
fixation.append(gaze_indices[0]) # 6-7. index_start, index_end
|
||||
fixation.append(gaze_indices[-1])
|
||||
|
||||
ds = ((pupil_diameter[start_index:(end_index+1), 1] + pupil_diameter[start_index:(end_index+1), 2]) / 2.)[np.logical_not(errors[start_index:(end_index+1)])]
|
||||
|
||||
fixation.append(np.mean(ds)) # 8. mean pupil diameter
|
||||
fixation.append(np.var(ds)) # 9. var pupil diameter
|
||||
|
||||
succ_dx = gazex[1:] - gazex[:-1]
|
||||
succ_dy = gazey[1:] - gazey[:-1]
|
||||
succ_angles = np.arctan2(succ_dy, succ_dx)
|
||||
|
||||
fixation.append(np.mean(succ_angles)) # 10 mean successive angle
|
||||
fixation.append(np.var(succ_angles)) # 11 var successive angle
|
||||
fixations.append(fixation)
|
||||
assert len(fixation) == len(gs.fixations_list_labels)
|
||||
|
||||
# set up new fixation
|
||||
fixation = []
|
||||
if errors[i]:
|
||||
i += 1
|
||||
counter = 0
|
||||
else:
|
||||
counter = 1
|
||||
sumx = x
|
||||
sumy = y
|
||||
else:
|
||||
if not errors[i]:
|
||||
counter += 1
|
||||
sumx += x
|
||||
sumy += y
|
||||
|
||||
i += 1
|
||||
return fixations
|
||||
|
||||
|
||||
def get_saccade_list(gaze, fixations, xi, yi, ti, pupil_diameter, fixation_radius_threshold, errors,
|
||||
saccade_min_velocity, max_saccade_duration):
|
||||
saccades = []
|
||||
wordbook_string = []
|
||||
|
||||
# each movement between two subsequent fixations could be a saccade, but
|
||||
for i in xrange(1, len(fixations)):
|
||||
# ...not if the window is too long
|
||||
duration = float(fixations[i][gs.fix_start_t_i] - fixations[i - 1][gs.fix_end_t_i])
|
||||
if duration > max_saccade_duration:
|
||||
continue
|
||||
|
||||
start_index = fixations[i - 1][gs.fix_end_index_i]
|
||||
end_index = fixations[i][gs.fix_start_index_i]
|
||||
|
||||
gazex = gaze[start_index:(end_index + 1), xi][np.logical_not(errors[start_index:(end_index + 1)])]
|
||||
gazey = gaze[start_index:(end_index + 1), yi][np.logical_not(errors[start_index:(end_index + 1)])]
|
||||
gazet = gaze[start_index:(end_index + 1), ti][np.logical_not(errors[start_index:(end_index + 1)])]
|
||||
|
||||
dx = np.abs(gazex[1:] - gazex[:-1])
|
||||
dy = np.abs(gazey[1:] - gazey[:-1])
|
||||
dt = np.abs(gazet[1:] - gazet[:-1])
|
||||
|
||||
# ...not if less than 2 non-errouneous amples are left:
|
||||
if len(dt) < 2:
|
||||
continue
|
||||
|
||||
distance = np.linalg.norm([dx, dy])
|
||||
peak_velocity = np.amax(distance / dt)
|
||||
|
||||
start_x = gazex[0]
|
||||
start_y = gazey[0]
|
||||
end_x = gazex[-1]
|
||||
end_y = gazey[-1]
|
||||
|
||||
dx = end_x - start_x
|
||||
dy = end_y - start_y
|
||||
|
||||
# ...not if the amplitude is shorter than a fith of fixation_radius_threshold
|
||||
amplitude = np.linalg.norm([dx, dy])
|
||||
if amplitude < fixation_radius_threshold / 5.0:
|
||||
continue
|
||||
|
||||
# ...not if the peak velocity is very low
|
||||
if peak_velocity < saccade_min_velocity:
|
||||
continue
|
||||
|
||||
|
||||
percentage_error = np.sum(errors[start_index:(end_index + 1)]) / float(end_index - start_index)
|
||||
# ...not if more than 50% of the data are erroneous
|
||||
if percentage_error >= 0.5:
|
||||
continue
|
||||
else: # found saccade!
|
||||
# compute characteristics of the saccade, like start and end point, amplitude, ...
|
||||
saccade = []
|
||||
saccade.append(start_x) # 0.-1. start x,y
|
||||
saccade.append(start_y)
|
||||
saccade.append(end_x) # 2-3. end x,y
|
||||
saccade.append(end_y)
|
||||
|
||||
if dx == 0:
|
||||
radians = 0
|
||||
else:
|
||||
radians = np.arctan(np.true_divide(dy, dx))
|
||||
|
||||
if dx > 0:
|
||||
if dy < 0:
|
||||
radians += (2 * np.pi)
|
||||
else:
|
||||
radians = np.pi + radians
|
||||
|
||||
saccade.append(radians) # 4. angle
|
||||
saccade.append(fixations[i - 1][gs.fix_end_t_i]) # 5-6. t_start, t_end
|
||||
saccade.append(fixations[i][gs.fix_start_t_i])
|
||||
saccade.append(start_index) # 7-8. index_start, index_end
|
||||
saccade.append(end_index)
|
||||
|
||||
ds = (pupil_diameter[start_index:(end_index + 1), 1] + pupil_diameter[start_index:(end_index + 1),
|
||||
2]) / 2.0
|
||||
saccade.append(np.mean(ds)) # 9. mean pupil diameter
|
||||
saccade.append(np.var(ds)) # 10. var pupil diameter
|
||||
saccade.append(peak_velocity) # 11. peak velocity
|
||||
|
||||
saccade.append(amplitude) # 12. amplitude
|
||||
|
||||
# append character representing this kind of saccade to the wordbook_string which will be used for n-gram features
|
||||
sac_id = get_dictionary_entry_for_saccade(amplitude, fixation_radius_threshold, radians)
|
||||
wordbook_string.append(sac_id)
|
||||
saccades.append(saccade)
|
||||
|
||||
# assert all saccade characteristics were computed
|
||||
assert len(saccade) == len(gs.saccades_list_labels)
|
||||
return saccades, wordbook_string
|
||||
|
||||
|
||||
def get_blink_list(event_strings, gaze, ti):
|
||||
assert len(event_strings) == len(gaze)
|
||||
|
||||
# detect Blinks
|
||||
blinks = []
|
||||
blink = [] # single blink, to be appended to blinks
|
||||
i = 0
|
||||
starti = i
|
||||
blink_started = False
|
||||
|
||||
while i < len(event_strings) - 1:
|
||||
if event_strings[i] == 'Blink' and not blink_started: # start new blink
|
||||
starti = i
|
||||
blink_started = True
|
||||
elif blink_started and not event_strings[i] == 'Blink':
|
||||
blink.append(gaze[starti, ti])
|
||||
blink.append(gaze[i - 1, ti])
|
||||
blink.append(starti)
|
||||
blink.append(i - 1)
|
||||
blinks.append(blink)
|
||||
assert len(blink) == len(gs.blink_list_labels)
|
||||
blink_started = False
|
||||
blink = []
|
||||
i += 1
|
||||
|
||||
return blinks
|
||||
|
||||
|
||||
def get_dictionary_entry_for_saccade(amplitude, fixation_radius_threshold, degree_radians):
|
||||
# Saacade Type: small, iff amplitude less than 2 fixation_radius_thresholds
|
||||
# U
|
||||
# O A
|
||||
# N u B
|
||||
# M n b C
|
||||
# L l r R
|
||||
# K j f E
|
||||
# J d F
|
||||
# H G
|
||||
# D
|
||||
|
||||
|
||||
degrees = np.true_divide(degree_radians * 180.0, np.pi)
|
||||
if amplitude < 2 * fixation_radius_threshold:
|
||||
d_degrees = degrees / (np.true_divide(90, 4))
|
||||
if d_degrees < 1:
|
||||
sac_id = 'r'
|
||||
elif d_degrees < 3:
|
||||
sac_id = 'b'
|
||||
elif d_degrees < 5:
|
||||
sac_id = 'u'
|
||||
elif d_degrees < 7:
|
||||
sac_id = 'n'
|
||||
elif d_degrees < 9:
|
||||
sac_id = 'l'
|
||||
elif d_degrees < 11:
|
||||
sac_id = 'j'
|
||||
elif d_degrees < 13:
|
||||
sac_id = 'd'
|
||||
elif d_degrees < 15:
|
||||
sac_id = 'f'
|
||||
elif d_degrees < 16:
|
||||
sac_id = 'r'
|
||||
else:
|
||||
print
|
||||
print 'error! d_degrees cannot be matched to a sac_id for a small saccade ', d_degrees
|
||||
sys.exit(1)
|
||||
|
||||
else: # large
|
||||
d_degrees = degrees / (np.true_divide(90, 8))
|
||||
|
||||
if d_degrees < 1:
|
||||
sac_id = 'R'
|
||||
elif d_degrees < 3:
|
||||
sac_id = 'C'
|
||||
elif d_degrees < 5:
|
||||
sac_id = 'B'
|
||||
elif d_degrees < 7:
|
||||
sac_id = 'A'
|
||||
elif d_degrees < 9:
|
||||
sac_id = 'U'
|
||||
elif d_degrees < 11:
|
||||
sac_id = 'O'
|
||||
elif d_degrees < 13:
|
||||
sac_id = 'N'
|
||||
elif d_degrees < 15:
|
||||
sac_id = 'M'
|
||||
elif d_degrees < 17:
|
||||
sac_id = 'L'
|
||||
elif d_degrees < 19:
|
||||
sac_id = 'K'
|
||||
elif d_degrees < 21:
|
||||
sac_id = 'J'
|
||||
elif d_degrees < 23:
|
||||
sac_id = 'H'
|
||||
elif d_degrees < 25:
|
||||
sac_id = 'D'
|
||||
elif d_degrees < 27:
|
||||
sac_id = 'G'
|
||||
elif d_degrees < 29:
|
||||
sac_id = 'F'
|
||||
elif d_degrees < 31:
|
||||
sac_id = 'E'
|
||||
elif d_degrees < 33:
|
||||
sac_id = 'R'
|
||||
else:
|
||||
print 'error! d_degrees cannot be matched to a sac_id for a large saccade: ', d_degrees
|
||||
sys.exit(1)
|
||||
return sac_id
|
||||
|
||||
|
||||
def detect_all(gaze, errors, ti, xi, yi, fixation_radius_threshold=0.01, pupil_diameter=None, event_strings=None,
|
||||
fixation_duration_threshold=0.1, saccade_min_velocity=2, max_saccade_duration=0.1):
|
||||
"""
|
||||
:param gaze: gaze data, typically [t,x,y]
|
||||
:param fixation_radius_threshold: dispersion threshold
|
||||
:param fixation_duration_threshold: temporal threshold
|
||||
:param ti, xi, yi: index data for gaze,i.e. for [t,x,y] ti=0, xi=1, yi=2
|
||||
:param pupil_diameter: pupil diameters values, same length as gaze
|
||||
:param event_strings: list of events, here provided by SMI. used to extract blink information
|
||||
"""
|
||||
|
||||
fixations = get_fixation_list(gaze, errors, xi, yi, ti, fixation_radius_threshold, fixation_duration_threshold,
|
||||
pupil_diameter)
|
||||
saccades, wordbook_string = get_saccade_list(gaze, fixations, xi, yi, ti, pupil_diameter,
|
||||
fixation_radius_threshold, errors, saccade_min_velocity,
|
||||
max_saccade_duration)
|
||||
blinks = get_blink_list(event_strings, gaze, ti)
|
||||
|
||||
return fixations, saccades, blinks, wordbook_string
|
582
featureExtraction/gaze_analysis.py
Normal file
582
featureExtraction/gaze_analysis.py
Normal file
|
@ -0,0 +1,582 @@
|
|||
#!/usr/bin/python
|
||||
import numpy as np
|
||||
import sys, os
|
||||
from featureExtraction import event_detection as ed
|
||||
import operator
|
||||
from config import names as gs
|
||||
|
||||
class gazeAnalysis (object):
|
||||
# dictionary for saccade-based n-grams:
|
||||
# each character encodes one direction, capital characters stand for long saccades, the others for short ones
|
||||
# short means the saccade amplitude is less than 2 fixation_radius_thresholds
|
||||
# U
|
||||
# O A
|
||||
# N u B
|
||||
# M n b C
|
||||
# L l . r R
|
||||
# K j f E
|
||||
# J d F
|
||||
# H G
|
||||
# D
|
||||
sacc_dictionary = ['A', 'B', 'C', 'R', 'E', 'F', 'G', 'D', 'H', 'J', 'K', 'L', 'M', 'N', 'O', 'U', 'u', 'b', 'r', 'f',
|
||||
'd', 'j', 'l', 'n']
|
||||
sacc_bins_two = [a+b for a in sacc_dictionary for b in sacc_dictionary]
|
||||
sacc_bins_three = [a+b+c for a in sacc_dictionary for b in sacc_dictionary for c in sacc_dictionary]
|
||||
sacc_bins_four = [a+b+c+d for a in sacc_dictionary for b in sacc_dictionary for c in sacc_dictionary for d in sacc_dictionary]
|
||||
sacc_bins = [sacc_dictionary, sacc_bins_two, sacc_bins_three, sacc_bins_four]
|
||||
|
||||
# dictionary for saccade and fixation-based n-grams:
|
||||
# S are saccades, long or short (i.e. longer or shorter than the fixation radius), and up/down/right/left
|
||||
# e.g. S_lu is a long saccade up
|
||||
# F are fixations, either long or short (i.e. longer or shorter than twice the minimum fixation duration)
|
||||
# saccFix_dictionary = ['S_lu', 'S_ld', 'S_lr', 'S_ll', 'S_su', 'S_sd', 'S_sr', 'S_sl', 'F_l', 'F_s']
|
||||
saccFix_dictionary = ['U', 'D', 'R', 'L', 'u', 'd', 'r', 'l', 'F', 'f']
|
||||
saccFix_bins_two = [a+b for a in saccFix_dictionary for b in saccFix_dictionary]
|
||||
saccFix_bins_three = [a+b+c for a in saccFix_dictionary for b in saccFix_dictionary for c in saccFix_dictionary]
|
||||
saccFix_bins_four = [a+b+c+d for a in saccFix_dictionary for b in saccFix_dictionary for c in saccFix_dictionary for d in saccFix_dictionary]
|
||||
saccFix_bins = [saccFix_dictionary, saccFix_bins_two, saccFix_bins_three, saccFix_bins_four]
|
||||
|
||||
def __init__(self, gaze, fixation_radius_threshold, fixation_duration_threshold, saccade_min_velocity,max_saccade_duration,
|
||||
pupil_diameter=None, event_strings=None, ti=0, xi=1, yi=2):
|
||||
assert gaze.size > 0
|
||||
|
||||
# save data in instance
|
||||
self.gaze = gaze
|
||||
self.diams = pupil_diameter
|
||||
self.event_strings = event_strings
|
||||
|
||||
# save constants, indices and thresholds that will be used muttiple times
|
||||
self.fixation_radius_threshold = fixation_radius_threshold
|
||||
self.fixation_duration_threshold = fixation_duration_threshold
|
||||
self.xi = xi
|
||||
self.yi = yi
|
||||
self.ti = ti
|
||||
|
||||
# detect errors, fixations, saccades and blinks
|
||||
self.errors = self.detect_errors()
|
||||
self.fixations, self.saccades, self.blinks, self.wordbook_string = \
|
||||
ed.detect_all(self.gaze, self.errors, self.ti, self.xi, self.yi, pupil_diameter=pupil_diameter,
|
||||
event_strings=event_strings, fixation_duration_threshold=fixation_duration_threshold,
|
||||
fixation_radius_threshold=fixation_radius_threshold, saccade_min_velocity=saccade_min_velocity,
|
||||
max_saccade_duration=max_saccade_duration)
|
||||
|
||||
def detect_errors(self, confidence_threshold=0.8, outlier_threshold=0.5):
|
||||
"""
|
||||
:param confidence_threshold: threshold below which all gaze data is deleted
|
||||
:param outlier_threshold: threshold beyond which gaze must not be outside the calibration area (i.e. [0,1])
|
||||
"""
|
||||
errors = np.full((len(self.gaze)), False, dtype=bool)
|
||||
|
||||
# gaze is nan
|
||||
errors[np.isnan(self.gaze[:, self.xi])] = True
|
||||
errors[np.isnan(self.gaze[:, self.yi])] = True
|
||||
|
||||
# gaze outside a certain range
|
||||
errors[self.gaze[:, self.xi] < -outlier_threshold] = True
|
||||
errors[self.gaze[:, self.xi] > outlier_threshold + 1] = True
|
||||
|
||||
errors[self.gaze[:, self.yi] < -outlier_threshold] = True
|
||||
errors[self.gaze[:, self.yi] > outlier_threshold + 1] = True
|
||||
|
||||
return errors
|
||||
|
||||
def get_window_features(self, sliding_window_size, sliding_window_step_size, start_index=-1, end_index=-1):
|
||||
"""
|
||||
computes features using a sliding window approach with the given sliding_window_size and sliding_window_step_size
|
||||
"""
|
||||
# if no start and end index are given, use all data
|
||||
if start_index == -1 and end_index == -1:
|
||||
start_index = 0
|
||||
end_index = len(self.gaze[:, 0]) - 1
|
||||
|
||||
# compute start and end times of each resulting sliding window
|
||||
window_times = self.get_sliding_windows(start_index, end_index, sliding_window_size, sliding_window_step_size)
|
||||
|
||||
#compute features for each of these windows:
|
||||
window_feature_list = []
|
||||
for [a,b,at,bt] in window_times:
|
||||
overallstats = self.get_full_feature_vector(a, b)
|
||||
window_feature_list.append(overallstats)
|
||||
assert len(gs.full_label_list) == len(window_feature_list[0])
|
||||
|
||||
window_feature_list = np.array(window_feature_list)
|
||||
window_times = np.array(window_times)
|
||||
return window_feature_list, window_times
|
||||
|
||||
def get_full_feature_vector(self, start_index, end_index):
|
||||
"""
|
||||
assembles the full feature vector of its part:
|
||||
features based on fixations/saccades/blinks, raw data, heatmaps, n-grams based on saccades and n-grams based on saccades and fixations
|
||||
"""
|
||||
# features based on events, i.e. fixations/saccades/blinks
|
||||
features = self.get_event_features(start_index, end_index)
|
||||
assert len(gs.event_feature_labels) == len(features)
|
||||
|
||||
# features based on raw data, like quartiles of gaze posiitons
|
||||
raw_features = self.get_raw_features(start_index, end_index)
|
||||
features.extend(raw_features)
|
||||
assert len(gs.position_feature_labels) == len(raw_features)
|
||||
|
||||
# heatmap features
|
||||
heatmap_features = self.get_heatmap_features(start_index, end_index)
|
||||
features.extend(heatmap_features)
|
||||
assert len(gs.heatmap_feature_labels) == len(heatmap_features)
|
||||
|
||||
# n-gram features based on saccades
|
||||
sacc_wordbook_features = self.get_sacc_ngram_features(start_index, end_index)
|
||||
features.extend(sacc_wordbook_features)
|
||||
assert len(gs.get_wordbook_feature_labels('')) == len(sacc_wordbook_features)
|
||||
|
||||
# n-gram features based on saccades and fixations
|
||||
saccFix_wordbook_features = self.get_saccFix_ngram_features(start_index, end_index)
|
||||
features.extend(saccFix_wordbook_features)
|
||||
assert len(gs.get_wordbook_feature_labels('')) == len(saccFix_wordbook_features)
|
||||
|
||||
return features
|
||||
|
||||
def get_event_features(self, start_index, end_index):
|
||||
"""
|
||||
computes features based on fixations, saccades and blinks within the selected gaze window
|
||||
"""
|
||||
event_features = []
|
||||
|
||||
# get non-errouneous samples between start_index and end_index:
|
||||
x,y,d = self.get_x_y_d_part(start_index, end_index)
|
||||
|
||||
data = self.gaze[start_index:(end_index+1), :]
|
||||
fixations, saccades, wordbook_string, blinks = self.get_FixSacWb_timed(start_index, end_index)
|
||||
|
||||
n, m = data.shape
|
||||
timespan = (data[-1,self.ti] - data[0,self.ti])
|
||||
|
||||
num_fix =len(fixations)
|
||||
num_sacc =len(saccades)
|
||||
|
||||
if timespan == 0:
|
||||
fix_rate = 0
|
||||
sacc_rate = 0
|
||||
else:
|
||||
fix_rate = num_fix / float(timespan)
|
||||
sacc_rate = num_sacc / float(timespan)
|
||||
|
||||
event_features.append(fix_rate) # 0. rate of fixations
|
||||
event_features.append(sacc_rate) # 1. rate of saccades
|
||||
|
||||
|
||||
sacc_UR_L = wordbook_string.count('U') + wordbook_string.count('A') + wordbook_string.count('B') + wordbook_string.count('C')
|
||||
sacc_BR_L = wordbook_string.count('R') + \
|
||||
wordbook_string.count('E') + \
|
||||
wordbook_string.count('F') + \
|
||||
wordbook_string.count('G')
|
||||
sacc_UL_L = wordbook_string.count('O') \
|
||||
+ wordbook_string.count('N') \
|
||||
+ wordbook_string.count('M') \
|
||||
+ wordbook_string.count('L')
|
||||
sacc_BL_L = wordbook_string.count('K') \
|
||||
+ wordbook_string.count('J') \
|
||||
+ wordbook_string.count('H') \
|
||||
+ wordbook_string.count('D')
|
||||
|
||||
sacc_UR_S = wordbook_string.count('u') \
|
||||
+ wordbook_string.count('b')
|
||||
sacc_BR_S = wordbook_string.count('r') \
|
||||
+ wordbook_string.count('f')
|
||||
sacc_UL_S = wordbook_string.count('n') \
|
||||
+ wordbook_string.count('l')
|
||||
sacc_BL_S = wordbook_string.count('j') \
|
||||
+ wordbook_string.count('d')
|
||||
|
||||
num_s_sacc = sacc_UR_S + sacc_BR_S + sacc_UL_S + sacc_BL_S
|
||||
num_la_sacc = sacc_UR_L + sacc_BR_L + sacc_UL_L + sacc_BL_L
|
||||
num_r_sacc = sacc_UR_S + sacc_BR_S + sacc_UR_L + sacc_BR_L
|
||||
num_l_sacc = sacc_UL_S + sacc_BL_S + sacc_UL_L + sacc_BL_L
|
||||
|
||||
if timespan > 0:
|
||||
event_features.append(num_s_sacc / float(timespan)) #2. rate of small saccades
|
||||
event_features.append(num_la_sacc / float(timespan)) #3. rate of large saccades
|
||||
event_features.append(num_r_sacc / float(timespan)) #4. rate of pos saccades
|
||||
event_features.append(num_l_sacc / float(timespan)) #5. rate of neg saccades
|
||||
else:
|
||||
event_features.extend([0]*4)
|
||||
|
||||
if num_fix > 0:
|
||||
event_features.append(num_sacc / float(num_fix)) # 6. ratio saccades / fixations
|
||||
else:
|
||||
event_features.append(0)
|
||||
|
||||
if num_sacc > 0:
|
||||
event_features.append(num_s_sacc /float(num_sacc)) # 7. ratio small sacc
|
||||
event_features.append(num_la_sacc / float(num_sacc)) # 8. ratio large sacc
|
||||
event_features.append(num_r_sacc / float(num_sacc)) # 9. ratio pos sacc
|
||||
event_features.append(num_l_sacc / float(num_sacc)) # 10. ratio neg sacc
|
||||
else:
|
||||
event_features.extend([0]*4)
|
||||
|
||||
sacc_array = np.array(saccades)
|
||||
fix_array = np.array(fixations)
|
||||
|
||||
if sacc_array.size > 0:
|
||||
# amplitude features
|
||||
amplitudes = sacc_array[:, gs.sacc_amplitude_i]
|
||||
event_features.append(np.mean(amplitudes)) # 11: mean sacc amplitude
|
||||
event_features.append(np.var(amplitudes)) # 12: var sacc amplitude
|
||||
event_features.append(amplitudes.min()) # 13 min sacc amplitude
|
||||
event_features.append(amplitudes.max()) # 14: max sacc amplitude
|
||||
|
||||
# peak velocity features
|
||||
velocities = sacc_array[:, gs.sacc_peak_vel_i]
|
||||
event_features.append(np.mean(velocities)) # 15: mean peak velocity
|
||||
event_features.append(np.var(velocities)) # 16: var peak velocity
|
||||
event_features.append(velocities.min()) # 17: min peak velocity
|
||||
event_features.append(velocities.max()) # 18: max peak velocity
|
||||
|
||||
if sacc_array[0, :].size == 13:
|
||||
event_features.append(np.mean(sacc_array[:, gs.sacc_mean_diam_i])) # 19 mean mean diameter
|
||||
event_features.append(np.var(sacc_array[:, gs.sacc_mean_diam_i])) # 20 var mean diameter
|
||||
event_features.append(np.mean(sacc_array[:, gs.sacc_var_diam_i])) # 21 mean var diameter
|
||||
event_features.append(np.var(sacc_array[:, gs.sacc_var_diam_i])) # 22 var var diameter
|
||||
else:
|
||||
event_features.extend([0]*4)
|
||||
else:
|
||||
event_features.extend([0]*12)
|
||||
|
||||
if fix_array.size > 0:
|
||||
durations = np.array(fix_array[:, gs.fix_end_t_i]) - np.array(fix_array[:, gs.fix_start_t_i])
|
||||
event_features.append(np.mean(durations)) # 23: mean fix duration
|
||||
event_features.append(np.var(durations)) # 24: var fix duration
|
||||
event_features.append(durations.min()) # 25: min fix duration
|
||||
event_features.append(durations.max()) # 26: max fix duration
|
||||
event_features.append(durations.sum()) # 27: dwelling time
|
||||
|
||||
event_features.append(np.mean(fix_array[:, gs.fix_mean_succ_angles])) # 28: mean mean subsequent angle
|
||||
event_features.append(np.var(fix_array[:, gs.fix_mean_succ_angles])) # 28: var mean subsequent angle
|
||||
event_features.append(np.mean(fix_array[:, gs.fix_var_succ_angles])) # 28: mean var subsequent angle
|
||||
event_features.append(np.var(fix_array[:, gs.fix_var_succ_angles])) # 28: var var subsequent angle
|
||||
|
||||
lnnII = np.logical_not(np.isnan(fix_array[:, gs.fix_var_x_i]))
|
||||
lnnIII = np.logical_not(np.isnan(fix_array[:, gs.fix_var_y_i]))
|
||||
event_features.append(np.mean(fix_array[lnnII, gs.fix_var_x_i])) # mean var x
|
||||
event_features.append(np.mean(fix_array[lnnIII, gs.fix_var_y_i])) # mean var y
|
||||
event_features.append(np.var(fix_array[lnnII, gs.fix_var_x_i])) # 29: var var x
|
||||
event_features.append(np.var(fix_array[lnnIII, gs.fix_var_y_i])) # 30: var var y
|
||||
|
||||
if fix_array[0, :].size == 12:
|
||||
event_features.append(np.mean(fix_array[:, gs.fix_mean_diam_i])) # 31 mean mean diameter
|
||||
event_features.append(np.var(fix_array[:, gs.fix_mean_diam_i])) # 32 var mean diameter
|
||||
event_features.append(np.mean(fix_array[:, gs.fix_var_diam_i])) # 33 mean var diameter
|
||||
event_features.append(np.var(fix_array[:, gs.fix_var_diam_i])) # 34 var var diameter
|
||||
else:
|
||||
event_features.extend([0]*4)
|
||||
else:
|
||||
event_features.extend([0]*17)
|
||||
|
||||
blink_array = np.array(blinks)
|
||||
if blink_array.size > 0:
|
||||
durations = np.array(blink_array[:, 1]) - np.array(blink_array[:, 0])
|
||||
event_features.append(np.mean(durations)) #35
|
||||
event_features.append(np.var(durations)) #36
|
||||
event_features.append(durations.min()) #37
|
||||
event_features.append(durations.max()) #38
|
||||
event_features.append(np.true_divide(len(blink_array), timespan)) #39
|
||||
else:
|
||||
event_features.extend([0]*5)
|
||||
return event_features
|
||||
|
||||
def get_x_y_d_part(self, start_index, end_index):
|
||||
x = self.gaze[start_index:(end_index + 1), self.xi]
|
||||
y = self.gaze[start_index:(end_index + 1), self.yi]
|
||||
d = (self.diams[start_index:(end_index + 1), 1] + self.diams[start_index:(end_index + 1), 2]) / 2.0
|
||||
|
||||
err = self.errors[start_index:(end_index + 1)]
|
||||
|
||||
x = x[np.logical_not(err)]
|
||||
y = y[np.logical_not(err)]
|
||||
d = d[np.logical_not(err)]
|
||||
return x,y,d
|
||||
|
||||
def get_raw_features(self, start_index, end_index):
|
||||
"""
|
||||
computes features based on raw gaze data, like percentiles of x coordinates
|
||||
"""
|
||||
raw_features = []
|
||||
|
||||
x,y,d = self.get_x_y_d_part(start_index, end_index)
|
||||
|
||||
for a in [x, y, d]:
|
||||
raw_features.append(np.mean(a))
|
||||
for a in [x, y, d]:
|
||||
raw_features.append(np.amin(a))
|
||||
for a in [x, y, d]:
|
||||
raw_features.append(np.amax(a))
|
||||
for a in [x, y, d]:
|
||||
raw_features.append(np.amax(a) - np.amin(a))
|
||||
for a in [x, y, d]:
|
||||
raw_features.append(np.std(a))
|
||||
for a in [x, y, d]:
|
||||
raw_features.append(np.median(a))
|
||||
for a in [x, y, d]:
|
||||
raw_features.append(np.percentile(a, 25))
|
||||
for a in [x, y, d]:
|
||||
raw_features.append(np.percentile(a, 75))
|
||||
for a in [x, y, d]:
|
||||
raw_features.append(np.percentile(a, 75) - np.percentile(a, 25))
|
||||
for a in [x, y, d]:
|
||||
raw_features.append(np.mean(np.abs(a[1:] - a[:-1])))
|
||||
for a in [x, y, d]:
|
||||
raw_features.append(np.mean(a[1:] - a[:-1]))
|
||||
|
||||
dx = x[:-1] - x[1:]
|
||||
dy = y[:-1] - y[1:]
|
||||
succ_angles = np.arctan2(dy, dx)
|
||||
raw_features.append(np.mean(succ_angles))# 28: mean subsequent angle
|
||||
return raw_features
|
||||
|
||||
def get_heatmap_features(self, start_index, end_index):
|
||||
"""
|
||||
computes a heatmap over the raw gaze positions, in a 8x8 grid
|
||||
"""
|
||||
x,y,d = self.get_x_y_d_part(start_index, end_index)
|
||||
|
||||
xmin = np.percentile(x, 2.5)
|
||||
xmax = np.percentile(x, 97.5)
|
||||
ymin = np.percentile(y, 2.5)
|
||||
ymax = np.percentile(y, 97.5)
|
||||
|
||||
heatmap, xedges, yedges = np.histogram2d(x, y, bins=(8, 8), range=[[xmin, xmax], [ymin, ymax]])
|
||||
normalised_flat_heatmap = heatmap.flatten() / np.sum(heatmap)
|
||||
return normalised_flat_heatmap
|
||||
|
||||
def get_sacc_ngram_features(self, start_index, end_index):
|
||||
# find those saccades that either start or end within start_index and end_index, or start before start_index and end after end_index
|
||||
mysacc = [sacc for sacc in self.saccades if (sacc[gs.sacc_start_index_i] > start_index and sacc[gs.sacc_start_index_i] < end_index)
|
||||
or (sacc[gs.sacc_end_index_i] > start_index and sacc[gs.sacc_end_index_i] < end_index)
|
||||
or (sacc[gs.sacc_start_index_i] < start_index and sacc[gs.sacc_end_index_i] > end_index)]
|
||||
# create string representing all saccades in mysacc
|
||||
mywbs = [self.wordbook_string[mysacc.index(sacc)] for sacc in mysacc]
|
||||
|
||||
# create all possible n-grams of a certain length
|
||||
ngrams = []
|
||||
ngrams.append(mywbs)
|
||||
for n in xrange(2,5):
|
||||
ngrams.append([reduce(operator.add, mywbs[i:i+n]) for i in range(len(mywbs) - n)])
|
||||
|
||||
# compute histograms of the actual n-grams occuring in the data
|
||||
histograms=[]
|
||||
for i in xrange(0,4):
|
||||
histograms.append(dict((x, ngrams[i].count(x)) for x in self.sacc_bins[i]))
|
||||
|
||||
# compute features from each histogram and append them to one list
|
||||
sacc_ngram_features = []
|
||||
for h in histograms:
|
||||
wb_feat = self.get_ngram_features(h)
|
||||
sacc_ngram_features.extend(wb_feat)
|
||||
|
||||
return sacc_ngram_features
|
||||
|
||||
def get_saccFix_wb_string_saccades(self, sacc):
|
||||
"""
|
||||
returns a string for a single saccade that will be used for n-gram features based on saccades and fixations
|
||||
"""
|
||||
amplitude = sacc[gs.sacc_amplitude_i]
|
||||
angle_rad = sacc[gs.sacc_angle_i]
|
||||
angle_deg = np.true_divide(angle_rad * 180.0, np.pi)
|
||||
|
||||
# 0 degrees is pointing to the right
|
||||
if angle_deg < 45:
|
||||
wb_str = 'r'
|
||||
elif angle_deg < 135:
|
||||
wb_str = 'u'
|
||||
elif angle_deg < 225:
|
||||
wb_str = 'l'
|
||||
elif angle_deg < 315:
|
||||
wb_str = 'd'
|
||||
else:
|
||||
wb_str = 'r'
|
||||
|
||||
if amplitude >= 2 * self.fixation_radius_threshold: # less than 2 fixation_radius_thresholds
|
||||
wb_str = wb_str.upper()
|
||||
|
||||
return wb_str
|
||||
|
||||
def get_saccFix_wb_string_fixations(self, fix):
|
||||
"""
|
||||
returns a string for a single fixation that will be used for n-gram features based on saccades and fixations
|
||||
"""
|
||||
if fix[gs.fix_end_t_i] - fix[gs.fix_start_t_i] < 2 * self.fixation_duration_threshold:
|
||||
return 'f'
|
||||
else:
|
||||
return 'F'
|
||||
|
||||
def get_saccFix_ngram_features(self, start_index, end_index):
|
||||
"""
|
||||
computes n-gram features based on saccades and fixations
|
||||
"""
|
||||
# find all saccades and fixations between start_index and end_index,
|
||||
# and create a string of their encodings
|
||||
sacc_index = 0
|
||||
fix_index = 0
|
||||
wordbook_string = []
|
||||
|
||||
sacc_start_i = gs.sacc_start_index_i
|
||||
sacc_end_i = gs.sacc_end_index_i
|
||||
fix_start_i = gs.fix_start_index_i
|
||||
fix_end_i = gs.fix_end_index_i
|
||||
|
||||
while (self.saccades[sacc_index][sacc_end_i] < start_index) and (sacc_index < len(self.saccades) - 1):
|
||||
sacc_index += 1
|
||||
|
||||
while (self.fixations[fix_index][fix_end_i] < start_index) and (fix_index < len(self.fixations) - 1):
|
||||
fix_index += 1
|
||||
|
||||
while sacc_index < len(self.saccades) and fix_index < len(self.fixations):
|
||||
if (self.saccades[sacc_index][sacc_start_i] < end_index) and (self.fixations[fix_index][fix_start_i] < end_index):
|
||||
if self.saccades[sacc_index][sacc_start_i] < self.fixations[fix_index][fix_start_i]:
|
||||
wordbook_string.append(self.get_saccFix_wb_string_saccades(self.saccades[sacc_index]))
|
||||
sacc_index += 1
|
||||
else:
|
||||
wordbook_string.append(self.get_saccFix_wb_string_fixations(self.fixations[fix_index]))
|
||||
fix_index += 1
|
||||
elif self.saccades[sacc_index][sacc_start_i] < end_index:
|
||||
wordbook_string.append(self.get_saccFix_wb_string_saccades(self.saccades[sacc_index]))
|
||||
sacc_index += 1
|
||||
elif self.fixations[fix_index][fix_start_i] < end_index:
|
||||
wordbook_string.append(self.get_saccFix_wb_string_fixations(self.fixations[fix_index]))
|
||||
fix_index += 1
|
||||
else:
|
||||
sacc_index += 1
|
||||
fix_index += 1
|
||||
|
||||
# compute all possible n-grams
|
||||
ngrams = []
|
||||
ngrams.append(wordbook_string)
|
||||
for n in xrange(2,5):
|
||||
ngrams.append([reduce(operator.add, wordbook_string[i:i+n]) for i in range(len(wordbook_string) - n)])
|
||||
|
||||
# compute histograms for n-grams
|
||||
histograms=[]
|
||||
for i in xrange(0,4):
|
||||
histograms.append(dict((x, ngrams[i].count(x)) for x in self.saccFix_bins[i]))
|
||||
|
||||
# compute features from each histogram and append to one list
|
||||
ngram_features = []
|
||||
for h in histograms:
|
||||
wb_feat = self.get_ngram_features(h)
|
||||
ngram_features.extend(wb_feat)
|
||||
|
||||
return ngram_features
|
||||
|
||||
def get_FixSacWb_timed(self, start_index, end_index):
|
||||
"""
|
||||
returns list of fixations, saccades, blinks and the associated wordbook_string
|
||||
for the time between start_index and end_index
|
||||
"""
|
||||
myfix = [fix for fix in self.fixations if (fix[gs. fix_start_index_i] > start_index
|
||||
and fix[gs. fix_start_index_i] < end_index)
|
||||
or (fix[gs.fix_end_index_i]>start_index and fix[gs.fix_end_index_i]<end_index)
|
||||
or (fix[gs.fix_start_index_i]<start_index and fix[gs.fix_end_index_i]>end_index)]
|
||||
|
||||
mysacc = [sacc for sacc in self.saccades if (sacc[gs.sacc_start_index_i]>start_index and sacc[gs.sacc_start_index_i]<end_index)
|
||||
or (sacc[gs.sacc_end_index_i]>start_index and sacc[gs.sacc_end_index_i]<end_index)
|
||||
or (sacc[gs.sacc_start_index_i]<start_index and sacc[gs.sacc_end_index_i]>end_index)]
|
||||
|
||||
mywbs = [self.wordbook_string[self.saccades.index(sacc)] for sacc in mysacc]
|
||||
blinks = [b for b in self.blinks if (b[gs.blink_start_index_i]>start_index and b[gs.blink_start_index_i]<end_index)
|
||||
or (b[gs.blink_end_index_i]>start_index and b[gs.blink_end_index_i]<end_index)
|
||||
or (b[gs.blink_start_index_i]<start_index and b[gs.blink_end_index_i]>end_index)]
|
||||
|
||||
return myfix, mysacc, mywbs, blinks
|
||||
|
||||
def get_sliding_windows(self, start_index, end_index, sliding_window_size, sliding_window_step_size):
|
||||
"""
|
||||
computes a list of time windows resulting from the sliding windows approach with the given sliding_window_size and sliding_window_step_size
|
||||
"""
|
||||
window_times = [] # consisting of lists [a,b,t_a,t_b] where a is start index, b ist end index
|
||||
|
||||
a = start_index
|
||||
b = min(self.getEndWindow(a, sliding_window_size), end_index)
|
||||
if self.check_sliding_window_conditions(a, b, end_index, sliding_window_size):
|
||||
window_times.append([a, b, self.gaze[a, self.ti], self.gaze[b, self.ti]])
|
||||
|
||||
while b < end_index:
|
||||
a = self.getStartWindow(a, sliding_window_step_size)
|
||||
b = self.getEndWindow(a, sliding_window_size)
|
||||
# check if some conditions are fulfilled and if so, add to the window list
|
||||
if self.check_sliding_window_conditions(a, b, end_index, sliding_window_size):
|
||||
window_times.append([a, b, self.gaze[a, self.ti], self.gaze[b, self.ti]])
|
||||
return window_times
|
||||
|
||||
def check_sliding_window_conditions(self, a, b, end_index, sliding_window_size):
|
||||
# discard too short or too long sliding windows
|
||||
window_duration = self.gaze[b, self.ti] - self.gaze[a, self.ti]
|
||||
min_duration = sliding_window_size - 0.1*sliding_window_size
|
||||
max_duration = sliding_window_size + 0.1*sliding_window_size
|
||||
if window_duration < min_duration or window_duration>max_duration:
|
||||
return False
|
||||
|
||||
if b <= end_index:
|
||||
errors_in_window = np.sum(self.errors[a:(b+1)]) / (b-a)
|
||||
|
||||
if errors_in_window < 0.5:
|
||||
# discard window if no saccade or fixation was detected
|
||||
fixations, saccades, wordbook_string, blinks = self.get_FixSacWb_timed(a,b)
|
||||
if len(fixations) == 0 and len(saccades) == 0:
|
||||
return False
|
||||
|
||||
xgaze = self.gaze[a:(b+1), self.xi][np.logical_not(self.errors[a:(b+1)])]
|
||||
ygaze = self.gaze[a:(b+1), self.yi][np.logical_not(self.errors[a:(b+1)])]
|
||||
|
||||
# discard window if less than 5 samples
|
||||
if len(xgaze) < 5:
|
||||
return False
|
||||
|
||||
# exclude windows with more than 66% constant gaze
|
||||
(xvals, xcounts) = np.unique(xgaze, return_counts=True)
|
||||
(yvals, ycounts) = np.unique(ygaze, return_counts=True)
|
||||
xcounts = xcounts / float(np.sum(xcounts))
|
||||
ycounts = ycounts / float(np.sum(ycounts))
|
||||
if xcounts.max() > 0.66 or ycounts.max() > 0.66:
|
||||
return False
|
||||
|
||||
#accept every remaining window
|
||||
return True
|
||||
else:
|
||||
# discard windows with more than 50% erroneous samples
|
||||
return False
|
||||
return False
|
||||
|
||||
def getStartWindow(self, old_start, sliding_window_step_size):
|
||||
start = old_start
|
||||
starttime = self.gaze[old_start, self.ti]
|
||||
while starttime < self.gaze[old_start, self.ti] + sliding_window_step_size:
|
||||
start += 1
|
||||
if start >= len(self.gaze[:, self.xi])-1:
|
||||
return len(self.gaze[:, self.xi])-1
|
||||
starttime = self.gaze[start, self.ti]
|
||||
return start
|
||||
|
||||
def getEndWindow(self, start, sliding_window_size):
|
||||
end = start
|
||||
while self.gaze[end, self.ti] < self.gaze[start, self.ti] + sliding_window_size:
|
||||
end += 1
|
||||
if end >= len(self.gaze[:, self.xi])-1:
|
||||
return len(self.gaze[:, self.xi])-1
|
||||
return end
|
||||
|
||||
def get_ngram_features(self, wb):
|
||||
feat = []
|
||||
feat.append(sum(x > 0 for x in wb.values())) # 1. size
|
||||
feat.append(np.max(wb.values())) # 2. maximum
|
||||
nonzeros = [i for i in wb.values() if i]
|
||||
if len(nonzeros)<1:
|
||||
feat.append(0)
|
||||
else:
|
||||
feat.append(min(nonzeros)) # 3. non-zero minimum
|
||||
feat.append(np.argmax(wb.values())) # 2. arg max
|
||||
if len(nonzeros)<1:
|
||||
feat.append(0)
|
||||
else:
|
||||
feat.append(np.argmin(np.array(nonzeros))) # 3. arg min
|
||||
feat.append(feat[1] - feat[2]) # 4. diff max - min
|
||||
feat.append(np.mean(wb.values())) # 5. mean of all counts
|
||||
feat.append(np.var(wb.values())) # 6. var of all counts
|
||||
return feat
|
Loading…
Reference in a new issue