99 lines
3.9 KiB
Python
99 lines
3.9 KiB
Python
import sys
|
|
import numpy as np
|
|
from config import conf
|
|
import getopt
|
|
from sklearn.cross_validation import LabelKFold as LKF
|
|
from sklearn.cross_validation import StratifiedKFold as SKF
|
|
from sklearn.metrics import f1_score, accuracy_score
|
|
import pandas as pns
|
|
|
|
def load_data(ws, t):
|
|
_, y_file, id_file = conf.get_merged_feature_files(ws)
|
|
y_ws = np.genfromtxt(y_file, delimiter=',', skip_header=1).astype(int)[:,t]
|
|
ids_ws = np.genfromtxt(id_file, delimiter=',', skip_header=1).astype(int)[:,0]
|
|
return y_ws, ids_ws
|
|
|
|
def get_baseline_f1_score(t):
|
|
"""
|
|
train a baseline classifier and return the F1 score it achieves
|
|
"""
|
|
outer_cv = SKF(participant_scores, conf.n_outer_folds, shuffle=True)
|
|
|
|
preds = np.zeros((conf.n_participants), dtype=int)
|
|
truth = np.zeros((conf.n_participants), dtype=int)
|
|
|
|
for outer_i, (outer_train_participants, outer_test_participants) in enumerate(outer_cv):
|
|
inner_performance = np.zeros((conf.n_inner_folds, len(conf.all_window_sizes)))
|
|
|
|
for ws_i in xrange(0, len(conf.all_window_sizes)):
|
|
ws = conf.all_window_sizes[ws_i]
|
|
|
|
# load data for this window size
|
|
y_ws, ids_ws = load_data(ws, t)
|
|
|
|
# cut out the outer train samples
|
|
outer_train_samples = np.array([p in outer_train_participants for p in ids_ws])
|
|
outer_train_y = y_ws[outer_train_samples]
|
|
outer_train_y_ids = ids_ws[outer_train_samples]
|
|
|
|
# build inner cross validation such that all samples of one person are either in training or testing
|
|
inner_cv = LKF(outer_train_y_ids, n_folds=conf.n_inner_folds)
|
|
for inner_i, (inner_train_indices, inner_test_indices) in enumerate(inner_cv):
|
|
# create inner train and test samples. Note: both are taken from outer train samples!
|
|
inner_y_train = outer_train_y[inner_train_indices]
|
|
unique_inner_test_ids = np.unique(outer_train_y_ids[inner_test_indices])
|
|
|
|
# predict the most frequent class from the training set
|
|
hist,_ = np.histogram(inner_y_train, bins=[0.5,1.5,2.5,3.5])
|
|
guess = np.argmax(hist) + 1
|
|
innerpreds = np.full(len(unique_inner_test_ids), guess, dtype=int)
|
|
innertruth = participant_scores[unique_inner_test_ids]
|
|
|
|
inner_performance[inner_i, ws_i] = accuracy_score(np.array(innertruth), np.array(innerpreds))
|
|
|
|
# evaluate classifier on outer cv using the best window size from inner cv
|
|
chosen_ws_i = np.argmax(np.mean(inner_performance, axis=0))
|
|
chosen_ws = conf.all_window_sizes[chosen_ws_i]
|
|
y, ids = load_data(chosen_ws, t)
|
|
|
|
outer_train_samples = np.array([p in outer_train_participants for p in ids])
|
|
outer_test_samples = np.array([p in outer_test_participants for p in ids])
|
|
|
|
if outer_train_samples.size > 0 and outer_test_samples.size > 0:
|
|
y_train = y[outer_train_samples]
|
|
|
|
# guess the most frequent class
|
|
hist,_ = np.histogram(y_train, bins=[0.5, 1.5, 2.5, 3.5])
|
|
guess = np.argmax(hist) + 1
|
|
|
|
for testp in outer_test_participants:
|
|
if testp in ids[outer_test_samples]:
|
|
preds[testp] = guess
|
|
truth[testp] = participant_scores[testp]
|
|
else:
|
|
# participant does not occour in outer test set, e.g. because their time in the shop was too short
|
|
preds[testp] = -1
|
|
truth[testp] = -1
|
|
print 'not enough samples for participant', testp
|
|
#print 'preds collected'
|
|
else:
|
|
for testp in outer_test_participants:
|
|
preds[testp] = np.array([])
|
|
truth[testp] = -1
|
|
|
|
f1 = f1_score(truth, preds, average='macro')
|
|
return f1
|
|
|
|
# If the program is run directly:
|
|
if __name__ == "__main__":
|
|
df = []
|
|
for trait in xrange(0, conf.n_traits):
|
|
participant_scores = np.loadtxt(conf.binned_personality_file, delimiter=',', skiprows=1, usecols=(trait+1,))
|
|
print conf.medium_traitlabels[trait]
|
|
for si in xrange(0,conf.max_n_iter):
|
|
f1 = get_baseline_f1_score(trait)
|
|
print '\t'+str(si)+':', f1
|
|
df.append([f1, conf.medium_traitlabels[trait], si])
|
|
df_pns = pns.DataFrame(data=df, columns=['F1', 'trait', 'iteration'])
|
|
df_pns.to_csv(conf.result_folder + '/most_frequ_class_baseline.csv')
|
|
print conf.result_folder + '/most_frequ_class_baseline.csv written.'
|