From cede6b6ca5fd3b8bb0c911233ba0c1ff3a78e182 Mon Sep 17 00:00:00 2001 From: mohsen-mansouryar Date: Wed, 9 Mar 2016 20:20:36 +0100 Subject: [PATCH] updated readme --- README.md | 45 ++++++++++++++++++++++++++++++++------------- 1 file changed, 32 insertions(+), 13 deletions(-) diff --git a/README.md b/README.md index f4cfdac..08c559d 100644 --- a/README.md +++ b/README.md @@ -3,20 +3,39 @@ published at ETRA 2016 -code -> Contains main scripts. below you can see a list of commands and the results they produce: -- cmd: python parallax_analysis.py pts |-> result: plot of calibration and test points. -- cmd: python parallax_analysis.py 2d3d |-> result: plot of 2D-to-2D againt 3D-to-3D mapping over all number of calibration depths. -- cmd: python parallax_analysis.py 2d2d_2d3d |-> result: plot comparing parallax error over five different test depths for three calibration depths of 1.0m, 1.5m, and 2.0m between 2D-to-2D and 3D-to-3D mapping. -- cmd: python parallax_2D3D_3Cdepths.py |-> result: plot comparing average angular error of the two mapping techniques when 3 calibration depths are used together. (depths 1 to 5 correspond to test depths 1.0m to 2.0m) +> `python parallax_analysis.py pts` >> plot of calibration and test points. -code/pupil -> Modules directly used from PUPIL source code for baseline 2D-to-2D mapping and data stream correlation. +> `python parallax_analysis.py 2d3d` >> plot of 2D-to-2D againt 3D-to-3D mapping over all number of calibration depths. -code/recording -> Scripts related to dataset recording and marker visualization and tracking. script dependencies are python 2's openCV and ArUco library. more information regarding each module is documented where required. +> `python parallax_analysis.py 2d2d_2d3d` >> plot comparing parallax error over five different test depths for three calibration depths of 1.0m, 1.5m, and 2.0m between 2D-to-2D and 3D-to-3D mapping. -code/results -> Contains gaze estimation results for both 2D-to-2D and 2D-to-3D mapping approaches with multiple calibration depths on data from participants. data files in the root directory of each method correspond to single depth calibration results. data format is described inside README.txt inside each method directory. the results are also available via /BS/3D_Gaze_Tracking/work/results +> `python parallax_2D3D_3Cdepths.py` >> plot comparing average angular error of the two mapping techniques when 3 calibration depths are used together. (depths 1 to 5 correspond to test depths 1.0m to 2.0m) -code/Visualization -> Creation of figures for the paper -1CalibrationDepth.py -> 2D-to-2D vs. 2D-to-3D with one calibration depth -3CalibrationDepths.py -> 2D-to-2D vs. 2D-to-3D with three calibration depth -EffectDistanceDifference1CalibrationDepth.py -> Effect of different distances to the original calibration depth -EffectNumberofClusters.py -> Effect of the number of clusters +> code/pupil -> Modules directly used from PUPIL source code for baseline 2D-to-2D mapping and data stream correlation. + +> code/recording -> Scripts related to dataset recording and marker visualization and tracking. script dependencies are python 2's openCV and ArUco library. more information regarding each module is documented where required. + +> code/results -> Contains gaze estimation results for both 2D-to-2D and 2D-to-3D mapping approaches with multiple calibration depths on data from participants. data files in the root directory of each method correspond to single depth calibration results. data format is described inside README.txt inside each method directory. the results are also available via /BS/3D_Gaze_Tracking/work/results + +> code/Visualization -> Creation of figures for the paper +>> `python 1CalibrationDepth.py` -> 2D-to-2D vs. 2D-to-3D with one calibration depth + +>> `python 3CalibrationDepths.py` -> 2D-to-2D vs. 2D-to-3D with three calibration depth + +>> `python EffectDistanceDifference1CalibrationDepth.py` -> Effect of different distances to the original calibration depth + +>> `python EffectNumberofClusters.py` -> Effect of the number of clusters + +### Publication + +If you use or extend our code, please cite the following + +> *Mansouryar, Mohsen, et al. "3D Gaze Estimation from 2D Pupil Positions on Monocular Head-Mounted Eye Trackers." arXiv preprint arXiv:1601.02644 (2016)* + +## Dependencies + +* [OpenCV](http://opencv.org/) – a multi-purpose computer vision library +* [ArUco](http://www.uco.es/investiga/grupos/ava/node/26) – minimal library for AR applications based on OpenCV +* [SciPy](http://www.scipy.org/) – for minimization, statistical and matrix operations as well as plotting +* [scikit-learn](http://scikit-learn.org/stable/) – Machine Learning tools in Python +* [Processing](https://processing.org/) – for visualizing AR markers \ No newline at end of file