from __future__ import division import numpy as np from random import sample def_fov = np.pi * 2./3 def generatePoints(n, min_xyz, max_xyz, grid=False, randomZ=True, randFixedZ=False, depth=None, offset=0.5, xoffset=0, yoffset=0, zoffset=0): if randFixedZ: # means all points have the same z but z is chosen at random between max and min z z = min_xyz[2] + np.random.random() * (max_xyz[2] - min_xyz[2]) else: # same depth if not isinstance(depth, list) and not depth: # depth is exactly the middle of min and max z z = min_xyz[2] + (max_xyz[2] - min_xyz[2]) / 2 else: z = depth if not grid: # compute randomly xr, yr, zr = max_xyz[0] - min_xyz[0], max_xyz[1] - min_xyz[1], max_xyz[2] - min_xyz[2] xr = np.random.rand(1, n)[0] * xr + min_xyz[0] yr = np.random.rand(1, n)[0] * yr + min_xyz[1] if randomZ: zr = np.random.rand(1, n)[0] * zr + min_xyz[2] else: zr = np.ones((1, n))[0] * z return zip(xr, yr, zr) else: # compute points on a mXm grid when m = sqrt(n) m = int(np.sqrt(n)) gwx = (max_xyz[0] - min_xyz[0]) / m gwy = (max_xyz[1] - min_xyz[1]) / m zr = max_xyz[2] - min_xyz[2] if randomZ: return [(min_xyz[0] + (i+offset) * gwx + xoffset, min_xyz[1] + (j+offset) * gwy + yoffset, np.random.random() * zr + min_xyz[2] + zoffset) for i in xrange(m) for j in xrange(m)] else: if not isinstance(depth, list): ret = [(min_xyz[0] + (i+offset) * gwx + xoffset, # offset .5 min_xyz[1] + (j+offset) * gwy + yoffset, # offset .5 z + zoffset) for i in xrange(m) for j in xrange(m)] # return ret return sample(ret, len(ret)) # this shuffles the points else: ret = [] for dz in depth: ret.extend([(min_xyz[0] + (i+offset) * gwx + xoffset, min_xyz[1] + (j+offset) * gwy + yoffset, dz + zoffset) for i in xrange(m) for j in xrange(m)]) # return ret return sample(ret, len(ret)) # this shuffles the points def getSphericalCoords(x, y, z): ''' According to our coordinate system, this returns the spherical coordinates of a 3D vector. A vector originating from zero and pointing to the positive Z direction (no X or Y deviation) will correspond to (teta, phi) = (0, 90) (in degrees) The coordinate system we are using is similar to https://en.wikipedia.org/wiki/File:3D_Spherical_2.svg Y | | |______X / / / Z with a CounterClockwise rotation of the axis vectors ''' r = np.sqrt(x*x + y*y + z*z) teta = np.arctan(x/z) phi = np.arccos(y/r) return teta, phi, r def getAngularDiff(T, E, C): ''' T is the target point E is the estimated target C is camera center Returns angular error (using law of cosines: http://mathcentral.uregina.ca/QQ/database/QQ.09.07/h/lucy1.html) ''' t = (E - C).mag e = (C - T).mag c = (T - E).mag return np.degrees(np.arccos((e*e + t*t - c*c)/(2*e*t))) def getRotationMatrixFromAngles(r): ''' Returns a rotation matrix by combining elemental rotations around x, y', and z'' It also appends a zero row, so the end result looks like: [R_11 R_12 R_13] [R_11 R_12 R_13] [R_11 R_12 R_13] [0 0 0 ] ''' cos = map(np.cos, r) sin = map(np.sin, r) Rx = np.array([ [1, 0, 0], [0, cos[0], -sin[0]], [0, sin[0], cos[0]]]) Ry = np.array([ [ cos[1], 0, sin[1]], [ 0 , 1, 0], [-sin[1], 0, cos[1]]]) Rz = np.array([ [cos[2], -sin[2], 0], [sin[2], cos[2], 0], [0 , 0, 1]]) R = Rz.dot(Ry.dot(Rx)) return np.concatenate((R, [[0, 0, 0]])) # import cv2 # def getRotationMatrix(a, b): # y = a[1] - b[1] # z = a[2] - b[2] # x = a[0] - b[0] # rotx = np.arctan(y/z) # roty = np.arctan(x*np.cos(rotx)/z) # rotz = np.arctan(np.cos(rotx)/(np.sin(rotx)*np.sin(roty))) # return cv2.Rodrigues(np.array([rotx, roty, rotz]))[0] def getRotationMatrix(a, b): ''' Computes the rotation matrix that maps unit vector a to unit vector b It also augments a zero row, so the end result looks like: [R_11 R_12 R_13] [R_11 R_12 R_13] [R_11 R_12 R_13] [0 0 0 ] (simply slice the output like R = output[:3] to get only the rotation matrix) based on the solution here: https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d ''' a, b = np.array(a), np.array(b) v = np.cross(a, b, axis=0) s = np.linalg.norm(v) # sine of angle c = a.dot(b) # cosine of angle vx = np.array([ [0 , -v[2], v[1]], [v[2] , 0, -v[0]], [-v[1], v[0], 0]]) if s == 0: # a == b return np.concatenate((np.eye(3), [[0, 0, 0]])) if c == 1: return np.concatenate((np.eye(3) + vx, [[0, 0, 0]])) return np.concatenate((np.eye(3) + vx + vx.dot(vx)*((1-c)/s/s), [[0, 0, 0]])) class PinholeCamera: ''' Models a basic Pinhole Camera with 9 degrees of freedom ''' # Intrinsic parameters f = 1 # focal length p = (0, 0) # position of principal point in the image plane # Extrinsic parameters # this rotation corresponds to a camera setting pointing towards (0, 0, -1) r = (0, 0, 0) # rotations in x, y', and z'' planes respectively t = (0, 0, 0) # camera center translation w.r.t world coordinate system (with no rotation) # # Using the above parameters we can construct the camera matrix # # [f 0 p.x 0] # P = K[R|t] where K = [0 f p.y 0] is the camera calibration matrix (full projection matrix) # [0 0 1 0] # # and thus we have x = PX for every point X in the word coordinate system # and its corresponding projection in the camera image plane x # NOTE: points are assumed to be represented by homogeneous vectors # # Other parameters label = '' direction = (0, 0, 1) # camera direction fov = def_fov # field of view (both horizontal and vertical) image_width = 2*f*np.tan(fov/2.) ################################################ def __init__(self, label, f = 1, r = (0, 0, 0), t = (0, 0, 0), direction = (0, 0, 1), fov=def_fov): self.label = label self.f = f self.r = r self.direction = direction self.t = t self.setFOV(fov) self.recomputeCameraMatrix(True, True) def recomputeCameraMatrix(self, changedRotation, changedIntrinsic): if changedRotation: # # Computing rotation matrix using elemental rotations self.R = getRotationMatrixFromAngles(self.r) # by default if rotation is 0 then camera optical axis points to positive Z self.direction = np.array([0, 0, 1, 0]).dot(self.R) # Computing the extrinsic matrix _t = -self.R.dot(np.array(self.t)) # t = -RC self.Rt = np.concatenate((self.R, np.array([[_t[0], _t[1], _t[2], 1]]).T), axis=1) # instead of the above, we could also represent translation matrix as [I|-C] and # [R -RC] # then compute Rt as R[I|-C] = [0 1] [R] [-RC] # but we're basically do the same thing by concatenating [0] with [ 1] if changedIntrinsic: # Computing intrinsic matrix f, px, py = self.f, self.p[0], self.p[1] self.K = np.array([ [f, 0, px, 0], [0, f, py, 0], [0, 0, 1, 0]]) # Full Camera Projection Matrix self.P = self.K.dot(self.Rt) ################################################ ## Intrinsic parameter setters def setF(self, f, auto_adjust = True): self.f = f if auto_adjust: self.setFOV(self.fov) self.recomputeCameraMatrix(False, True) def setP(self, p, auto_adjust = True): self.p = p if auto_adjust: self.recomputeCameraMatrix(False, True) def setFOV(self, fov): self.fov = fov self.image_width = 2*self.f*np.tan(fov/2.) ################################################ ## Extrinsic parameter setters def setT(self, t, auto_adjust = True): self.t = t if auto_adjust: self.recomputeCameraMatrix(False, False) def setR(self, r, auto_adjust = True): self.r = r if auto_adjust: self.recomputeCameraMatrix(True, False) ################################################ def project(self, p): ''' Computes projection of a point p in world coordinate system using its homogeneous vector coordinates [x, y, z, 1] ''' if len(p) < 4: p = (p[0], p[1], p[2], 1) projection = self.P.dot(np.array(p)) # dividing by the Z value to get a 2D point from homogeneous coordinates return np.array((projection[0], projection[1]))/projection[2] def getNormalizedPts(self, pts): ''' Returns normalized x and y coordinates in range [0, 1] ''' px, py = self.p[0], self.p[1] return map(lambda p:np.array([p[0] - px + self.image_width/2, p[1] - py + self.image_width/2]) / self.image_width, pts) def getDenormalizedPts(self, pts): ''' Returns original points in the camera image coordinate plane from normalized points ''' px, py = self.p[0], self.p[1] offset = np.array([self.image_width/2-px, self.image_width/2-py]) return map(lambda p:(p*self.image_width)-offset, pts) class Camera(PinholeCamera): default_radius = 2.0 def updateShape(self): c = v(self.t) # Update camera center self.center.pos = c # Update the arrow self.dir.pos = c self.dir.axis = v(self.direction) * self.f # Update image plane self.img_plane.pos = c + self.dir.axis self.img_plane.length = self.image_width self.img_plane.height = self.image_width # TODO: handle rotation of image plane