from __future__ import division import numpy as np from numpy import linalg as LA from minimize import findInitialW, _q, g, minimizeEnergy from time import time from geom import getSphericalCoords, getAngularDiff from recording.tracker import Marker # from visual import vector as v # for vector operations from vector import Vector as v DATA_DIR = './recording/data/' # DATA_DIR = '.\\recording\\data\\' EYE_CAMERA_IMAGE_WIDTH = 640 EYE_CAMERA_IMAGE_HEIGHT = 360 curr_calibration_experiment = '006' curr_test_experiment = '010' # markers in order of being targeted: experiments = {'005': [130, 608, 456, 399, 659, 301, 351, 707, 18], '006': [130, 608, 456, 399, 659, 301, 351, 707, 18], '007': [449, 914, 735, 842, 347, 660, 392, 782], '010': [449, 914, 554, 243, 347, 173, 664, 399]} def denormalize(p): # return p * np.array([EYE_CAMERA_IMAGE_WIDTH, EYE_CAMERA_IMAGE_HEIGHT]) return p * np.array([EYE_CAMERA_IMAGE_WIDTH, EYE_CAMERA_IMAGE_HEIGHT]) - \ (np.array([EYE_CAMERA_IMAGE_WIDTH, EYE_CAMERA_IMAGE_HEIGHT]) / 2) def main(): single_point = False __p, _t = [], [] p, t = [], [] # Fetching marker position wrt camera t from calibration data marker_data = np.load(DATA_DIR + 'frames_%s.npy' % curr_calibration_experiment) # marker_data includes data on tracked markers per frame # it's a list with as many entries as the number of video frames, each entry # has a list of tracked markers, each marker item has marker id, marker corners, Rvec, Tvec # TODO (remember the unit) # Fetching pupil positions p from calibration data pupil_data = np.load(DATA_DIR + 'pp_%s.npy' % curr_calibration_experiment) # pupil_data is a list of tracked pupil positions, each entry has 3 elements # array: frame range (start, end) # array: mean pupil position # list: all pupil positions in the range # TODO (also remember to denormalize) for i, pos in enumerate(pupil_data): corresponding_marker_id = experiments[curr_calibration_experiment][i] # print corresponding_marker_id start, end = pos[0] if len(pos[2]) == end-start+1: # all samples for this points are reliable # add all corresponding pupil-3d points as mappings # print start, end, len(pos[2]) for i, _p in enumerate(pos[2]): frame_number = start + i if frame_number >= len(marker_data): continue # TODO: investigate for marker in marker_data[frame_number]: if marker[0][0] == corresponding_marker_id: if single_point: __p.append(denormalize(_p)) _t.append(Marker.fromList(marker).getCenter()) else: p.append(denormalize(_p)) t.append(Marker.fromList(marker).getCenter()) if single_point and len(__p): p.append(sum(__p)/len(__p)) t.append(sum(_t)/len(_t)) __p, _t = [], [] else: # if pos[2] is nonempty consider the mean if len(pos[2]): # TODO: here we can still map the corresponding pupil points to their detected marker given # we have the frame correspondence (investigate) # map pos[1] to corresponding markers for frame_number in xrange(start, end+1): if frame_number >= len(marker_data): continue # TODO: investigate for marker in marker_data[frame_number]: if marker[0][0] == corresponding_marker_id: if single_point: __p.append(denormalize(pos[1])) _t.append(Marker.fromList(marker).getCenter()) else: p.append(denormalize(pos[1])) t.append(Marker.fromList(marker).getCenter()) if single_point and len(__p): p.append(sum(__p)/len(__p)) t.append(sum(_t)/len(_t)) __p, _t = [], [] else: pass # No mapping here print len(p), len(t) # print p[0], t[0] # we have to denormalize pupil points and correlated the two data streams (frame correspondence) print 'Successfully loaded calibration data...' # return print 'Performing minimization...' ## Finding the optimal transformation matrix by minimizing the nonlinear energy # w0 is the initial w by solving the leastsq with e=(0,0,0) # w is by solving the leastsq again optimizing for both e and w start = time() w, e, w0 = minimizeEnergy(p, t) minimizationTime = time() - start print 'minimization time:', minimizationTime p, t = [], [] marker_data = np.load(DATA_DIR + 'frames_%s.npy' % curr_test_experiment) pupil_data = np.load(DATA_DIR + 'pp_%s.npy' % curr_test_experiment) print len(pupil_data), len(experiments[curr_test_experiment]) for i, pos in enumerate(pupil_data): corresponding_marker_id = experiments[curr_test_experiment][i] # print corresponding_marker_id start, end = pos[0] if len(pos[2]) == end-start+1: # all samples for this points are reliable # add all corresponding pupil-3d points as mappings # print start, end, len(pos[2]) for i, _p in enumerate(pos[2]): frame_number = start + i if frame_number >= len(marker_data): continue # TODO: investigate for marker in marker_data[frame_number]: if marker[0][0] == corresponding_marker_id: if single_point: __p.append(denormalize(_p)) _t.append(Marker.fromList(marker).getCenter()) else: p.append(denormalize(_p)) t.append(Marker.fromList(marker).getCenter()) if single_point and len(__p): p.append(sum(__p)/len(__p)) t.append(sum(_t)/len(_t)) __p, _t = [], [] else: # if pos[2] is nonempty consider the mean if len(pos[2]): # TODO: here we can still map the corresponding pupil points to their detected marker given # we have the frame correspondence (investigate) # map pos[1] to corresponding markers for frame_number in xrange(start, end+1): if frame_number >= len(marker_data): continue # TODO: investigate for marker in marker_data[frame_number]: if marker[0][0] == corresponding_marker_id: if single_point: __p.append(denormalize(pos[1])) _t.append(Marker.fromList(marker).getCenter()) else: p.append(denormalize(pos[1])) t.append(Marker.fromList(marker).getCenter()) if single_point and len(__p): p.append(sum(__p)/len(__p)) t.append(sum(_t)/len(_t)) __p, _t = [], [] else: pass print 'Successfully loaded test data...' # closest point distance to scene camera cDist = min(v(pt).mag for pt in t) # farthest point distance to scene camera fDist = max(v(pt).mag for pt in t) # average point distance to scene camera avgDist = sum(v(pt).mag for pt in t)/len(t) qi = map(_q, p) # computing feature vectors from raw pupil coordinates in 2D # computing unit gaze vectors corresponding to pupil positions # here we use the computed mapping matrix w gis = map(lambda q: g(q, w), qi) gis0 = map(lambda q: g(q, w0), qi) # now we can compare unit gaze vectors with their corresponding gaze rays t # normalizing gaze rays first t = np.array(map(lambda vec: v(vec).norm(), t)) # TODO: compare spherical coordinates instead AE = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gis, t)) N = len(t) AAE = sum(AE)/N VAR = sum((ae - AAE)**2 for ae in AE)/N print 'AAE:', AAE, '\nVariance:', VAR, 'STD:', np.sqrt(VAR), '\nMin:', min(AE), 'Max:', max(AE), '(N=' + str(N) + ')' print 'Target Distances: m=%s M=%s Avg=%s' % (cDist, fDist, avgDist) AE0 = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gis0, t)) AAE0 = sum(AE0)/N print 'AAE (only optimizing W for e=(0,0,0)):', AAE0 if __name__ == '__main__': main()