gazesim/code/pupil/player_methods.py
2016-03-09 19:52:35 +01:00

157 lines
5.5 KiB
Python

'''
(*)~----------------------------------------------------------------------------------
Pupil - eye tracking platform
Copyright (C) 2012-2015 Pupil Labs
Distributed under the terms of the CC BY-NC-SA License.
License details are in the file license.txt, distributed as part of this software.
----------------------------------------------------------------------------------~(*)
'''
import os
import cv2
import numpy as np
#logging
import logging
logger = logging.getLogger(__name__)
from file_methods import save_object
def correlate_data(data,timestamps):
'''
data: dict of data :
will have at least:
timestamp: float
timestamps: timestamps list to correlate data to
this takes a data list and a timestamps list and makes a new list
with the length of the number of timestamps.
Each slot conains a list that will have 0, 1 or more assosiated data points.
Finnaly we add an index field to the data_point with the assosiated index
'''
timestamps = list(timestamps)
data_by_frame = [[] for i in timestamps]
frame_idx = 0
data_index = 0
while True:
try:
datum = data[data_index]
# we can take the midpoint between two frames in time: More appropriate for SW timestamps
ts = ( timestamps[frame_idx]+timestamps[frame_idx+1] ) / 2.
# or the time of the next frame: More appropriate for Sart Of Exposure Timestamps (HW timestamps).
# ts = timestamps[frame_idx+1]
except IndexError:
# we might loose a data point at the end but we dont care
break
if datum['timestamp'] <= ts:
datum['index'] = frame_idx
data_by_frame[frame_idx].append(datum)
data_index +=1
else:
frame_idx+=1
return data_by_frame
def update_recording_0v4_to_current(rec_dir):
logger.info("Updatig recording from v0.4x format to current version")
gaze_array = np.load(os.path.join(rec_dir,'gaze_positions.npy'))
pupil_array = np.load(os.path.join(rec_dir,'pupil_positions.npy'))
gaze_list = []
pupil_list = []
for datum in pupil_array:
ts, confidence, id, x, y, diameter = datum[:6]
pupil_list.append({'timestamp':ts,'confidence':confidence,'id':id,'norm_pos':[x,y],'diameter':diameter})
pupil_by_ts = dict([(p['timestamp'],p) for p in pupil_list])
for datum in gaze_array:
ts,confidence,x,y, = datum
gaze_list.append({'timestamp':ts,'confidence':confidence,'norm_pos':[x,y],'base':[pupil_by_ts.get(ts,None)]})
pupil_data = {'pupil_positions':pupil_list,'gaze_positions':gaze_list}
try:
save_object(pupil_data,os.path.join(rec_dir, "pupil_data"))
except IOError:
pass
def update_recording_0v3_to_current(rec_dir):
logger.info("Updatig recording from v0.3x format to current version")
pupilgaze_array = np.load(os.path.join(rec_dir,'gaze_positions.npy'))
gaze_list = []
pupil_list = []
for datum in pupilgaze_array:
gaze_x,gaze_y,pupil_x,pupil_y,ts,confidence = datum
#some bogus size and confidence as we did not save it back then
pupil_list.append({'timestamp':ts,'confidence':confidence,'id':0,'norm_pos':[pupil_x,pupil_y],'diameter':50})
gaze_list.append({'timestamp':ts,'confidence':confidence,'norm_pos':[gaze_x,gaze_y],'base':[pupil_list[-1]]})
pupil_data = {'pupil_positions':pupil_list,'gaze_positions':gaze_list}
try:
save_object(pupil_data,os.path.join(rec_dir, "pupil_data"))
except IOError:
pass
def is_pupil_rec_dir(rec_dir):
if not os.path.isdir(rec_dir):
logger.error("No valid dir supplied")
return False
meta_info_path = os.path.join(rec_dir,"info.csv")
try:
with open(meta_info_path) as info:
meta_info = dict( ((line.strip().split('\t')) for line in info.readlines() ) )
info = meta_info["Capture Software Version"]
except:
logger.error("Could not read info.csv file: Not a valid Pupil recording.")
return False
return True
def transparent_circle(img,center,radius,color,thickness):
center = tuple(map(int,center))
rgb = [255*c for c in color[:3]] # convert to 0-255 scale for OpenCV
alpha = color[-1]
radius = int(radius)
if thickness > 0:
pad = radius + 2 + thickness
else:
pad = radius + 3
roi = slice(center[1]-pad,center[1]+pad),slice(center[0]-pad,center[0]+pad)
try:
overlay = img[roi].copy()
cv2.circle(overlay,(pad,pad), radius=radius, color=rgb, thickness=thickness, lineType=cv2.cv.CV_AA)
opacity = alpha
cv2.addWeighted(overlay, opacity, img[roi], 1. - opacity, 0, img[roi])
except:
logger.debug("transparent_circle would have been partially outsize of img. Did not draw it.")
def transparent_image_overlay(pos,overlay_img,img,alpha):
"""
Overlay one image with another with alpha blending
In player this will be used to overlay the eye (as overlay_img) over the world image (img)
Arguments:
pos: (x,y) position of the top left corner in numpy row,column format from top left corner (numpy coord system)
overlay_img: image to overlay
img: destination image
alpha: 0.0-1.0
"""
roi = slice(pos[1],pos[1]+overlay_img.shape[0]),slice(pos[0],pos[0]+overlay_img.shape[1])
try:
cv2.addWeighted(overlay_img,alpha,img[roi],1.-alpha,0,img[roi])
except:
logger.debug("transparent_image_overlay was outside of the world image and was not drawn")
pass