944 lines
32 KiB
Python
944 lines
32 KiB
Python
import os, sys
|
|
import seaborn
|
|
from pylab import rcParams
|
|
import cv2
|
|
|
|
import numpy as np
|
|
from numpy import linalg as LA
|
|
from time import time
|
|
from itertools import combinations
|
|
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib.pyplot import *
|
|
import matplotlib.patches as mpatches
|
|
|
|
# activate latex text rendering
|
|
#rc('text', usetex=True)
|
|
|
|
def main(argv):
|
|
# path = str(argv[0])
|
|
path ="/home/mmbrian/3D_Gaze_Tracking/work/results/2D2D/"
|
|
|
|
Data1 = np.load(path + "p5_2d2d_all.npy")
|
|
Data2 = np.load(path + "p7_2d2d_all.npy")
|
|
Data3 = np.load(path + "p10_2d2d_all.npy")
|
|
Data4 = np.load(path + "p11_2d2d_all.npy")
|
|
Data5 = np.load(path + "p12_2d2d_all.npy")
|
|
Data6 = np.load(path + "p13_2d2d_all.npy")
|
|
Data7 = np.load(path + "p14_2d2d_all.npy")
|
|
Data8 = np.load(path + "p15_2d2d_all.npy")
|
|
Data9 = np.load(path + "p16_2d2d_all.npy")
|
|
Data10 = np.load(path + "p20_2d2d_all.npy")
|
|
Data11 = np.load(path + "p21_2d2d_all.npy")
|
|
Data12 = np.load(path + "p24_2d2d_all.npy")
|
|
Data13 = np.load(path + "p25_2d2d_all.npy")
|
|
Data14 = np.load(path + "p26_2d2d_all.npy")
|
|
|
|
Data = [Data1,Data2,Data3,Data4,Data5,Data6,Data7,Data8,Data9,Data10,Data11,Data12,Data13,Data14]
|
|
|
|
Participantmean = []
|
|
for i in xrange(5):
|
|
Participantmean.append(float(0))
|
|
yerrup = []
|
|
for i in xrange(5):
|
|
yerrup.append(float(0))
|
|
yerrdown = []
|
|
for i in xrange(5):
|
|
yerrdown.append(float(0))
|
|
|
|
maxvalue = []
|
|
for i in xrange(5):
|
|
maxvalue.append(float(0))
|
|
minvalue = []
|
|
for i in xrange(5):
|
|
minvalue.append(float(0))
|
|
|
|
Activitymax = []
|
|
for i in xrange(5):
|
|
Activitymax.append([])
|
|
for j in xrange(15):
|
|
Activitymax[i].append(float(0))
|
|
|
|
Activitymin = []
|
|
for i in xrange(5):
|
|
Activitymin.append([])
|
|
for j in xrange(15):
|
|
Activitymin[i].append(float(0))
|
|
|
|
AngularerrorC1 = []
|
|
for i in xrange(5):
|
|
AngularerrorC1.append([])
|
|
for j in xrange(14):
|
|
AngularerrorC1[i].append(float(0))
|
|
|
|
AngularerrorC2 = []
|
|
for i in xrange(5):
|
|
AngularerrorC2.append([])
|
|
for j in xrange(14):
|
|
AngularerrorC2[i].append(float(0))
|
|
|
|
AngularerrorC3 = []
|
|
for i in xrange(5):
|
|
AngularerrorC3.append([])
|
|
for j in xrange(14):
|
|
AngularerrorC3[i].append(float(0))
|
|
|
|
AngularerrorC4 = []
|
|
for i in xrange(5):
|
|
AngularerrorC4.append([])
|
|
for j in xrange(14):
|
|
AngularerrorC4[i].append(float(0))
|
|
|
|
AngularerrorC5 = []
|
|
for i in xrange(5):
|
|
AngularerrorC5.append([])
|
|
for j in xrange(14):
|
|
AngularerrorC5[i].append(float(0))
|
|
|
|
# C1
|
|
distance = 1.0
|
|
i = 0
|
|
while i < 14:
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.0 and Data[i][j][0] == distance:
|
|
AngularerrorC1[0][i] = Data[i][j][7]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
print "i: ", i," j: ", j
|
|
if Data[i][j][1] == 1.25 and Data[i][j][0] == distance:
|
|
print Data[i][j][7]
|
|
AngularerrorC1[1][i] = Data[i][j][7]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.5 and Data[i][j][0] == distance:
|
|
AngularerrorC1[2][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.75 and Data[i][j][0] == distance:
|
|
AngularerrorC1[3][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 2.0 and Data[i][j][0] == distance:
|
|
AngularerrorC1[4][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
i += 1
|
|
|
|
print "AngularerrorC1: ", AngularerrorC1[0]
|
|
print "AngularerrorC1: ", AngularerrorC1[1]
|
|
print "AngularerrorC1: ", AngularerrorC1[2]
|
|
print "AngularerrorC1: ", AngularerrorC1[3]
|
|
print "AngularerrorC1: ", AngularerrorC1[4]
|
|
|
|
meanC1D1 = np.mean(AngularerrorC1[0])
|
|
meanC1D2 = np.mean(AngularerrorC1[1])
|
|
meanC1D3 = np.mean(AngularerrorC1[2])
|
|
meanC1D4 = np.mean(AngularerrorC1[3])
|
|
meanC1D5 = np.mean(AngularerrorC1[4])
|
|
|
|
stdC1D1 = np.std(AngularerrorC1[0])
|
|
stdC1D2 = np.std(AngularerrorC1[1])
|
|
stdC1D3 = np.std(AngularerrorC1[2])
|
|
stdC1D4 = np.std(AngularerrorC1[3])
|
|
stdC1D5 = np.std(AngularerrorC1[4])
|
|
|
|
meanC1 = [meanC1D1,meanC1D2,meanC1D3,meanC1D4,meanC1D5]
|
|
stdC1 = [stdC1D1,stdC1D2,stdC1D3,stdC1D4,stdC1D5]
|
|
|
|
# C2
|
|
distance = 1.25
|
|
i = 0
|
|
while i < 14:
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.0 and Data[i][j][0] == distance:
|
|
AngularerrorC2[0][i] = Data[i][j][7]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
print "i: ", i," j: ", j
|
|
if Data[i][j][1] == 1.25 and Data[i][j][0] == distance:
|
|
print Data[i][j][7]
|
|
AngularerrorC2[1][i] = Data[i][j][7]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.5 and Data[i][j][0] == distance:
|
|
AngularerrorC2[2][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.75 and Data[i][j][0] == distance:
|
|
AngularerrorC2[3][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 2.0 and Data[i][j][0] == distance:
|
|
AngularerrorC2[4][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
i += 1
|
|
|
|
print "AngularerrorC2: ", AngularerrorC2[0]
|
|
print "AngularerrorC2: ", AngularerrorC2[1]
|
|
print "AngularerrorC2: ", AngularerrorC2[2]
|
|
print "AngularerrorC2: ", AngularerrorC2[3]
|
|
print "AngularerrorC2: ", AngularerrorC2[4]
|
|
|
|
meanC2D1 = np.mean(AngularerrorC2[0])
|
|
meanC2D2 = np.mean(AngularerrorC2[1])
|
|
meanC2D3 = np.mean(AngularerrorC2[2])
|
|
meanC2D4 = np.mean(AngularerrorC2[3])
|
|
meanC2D5 = np.mean(AngularerrorC2[4])
|
|
|
|
stdC2D1 = np.std(AngularerrorC2[0])
|
|
stdC2D2 = np.std(AngularerrorC2[1])
|
|
stdC2D3 = np.std(AngularerrorC2[2])
|
|
stdC2D4 = np.std(AngularerrorC2[3])
|
|
stdC2D5 = np.std(AngularerrorC2[4])
|
|
|
|
meanC2 = [meanC2D1,meanC2D2,meanC2D3,meanC2D4,meanC2D5]
|
|
stdC2 = [stdC2D1,stdC2D2,stdC2D3,stdC2D4,stdC2D5]
|
|
|
|
# C3
|
|
distance = 1.5
|
|
i = 0
|
|
while i < 14:
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.0 and Data[i][j][0] == distance:
|
|
AngularerrorC3[0][i] = Data[i][j][7]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
print "i: ", i," j: ", j
|
|
if Data[i][j][1] == 1.25 and Data[i][j][0] == distance:
|
|
print Data[i][j][7]
|
|
AngularerrorC3[1][i] = Data[i][j][7]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.5 and Data[i][j][0] == distance:
|
|
AngularerrorC3[2][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.75 and Data[i][j][0] == distance:
|
|
AngularerrorC3[3][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 2.0 and Data[i][j][0] == distance:
|
|
AngularerrorC3[4][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
i += 1
|
|
|
|
print "AngularerrorC3: ", AngularerrorC3[0]
|
|
print "AngularerrorC3: ", AngularerrorC3[1]
|
|
print "AngularerrorC3: ", AngularerrorC3[2]
|
|
print "AngularerrorC3: ", AngularerrorC3[3]
|
|
print "AngularerrorC3: ", AngularerrorC3[4]
|
|
|
|
meanC3D1 = np.mean(AngularerrorC3[0])
|
|
meanC3D2 = np.mean(AngularerrorC3[1])
|
|
meanC3D3 = np.mean(AngularerrorC3[2])
|
|
meanC3D4 = np.mean(AngularerrorC3[3])
|
|
meanC3D5 = np.mean(AngularerrorC3[4])
|
|
|
|
stdC3D1 = np.std(AngularerrorC3[0])
|
|
stdC3D2 = np.std(AngularerrorC3[1])
|
|
stdC3D3 = np.std(AngularerrorC3[2])
|
|
stdC3D4 = np.std(AngularerrorC3[3])
|
|
stdC3D5 = np.std(AngularerrorC3[4])
|
|
|
|
meanC3 = [meanC3D1,meanC3D2,meanC3D3,meanC3D4,meanC3D5]
|
|
stdC3 = [stdC3D1,stdC3D2,stdC3D3,stdC3D4,stdC3D5]
|
|
|
|
# C4
|
|
distance = 1.75
|
|
i = 0
|
|
while i < 14:
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.0 and Data[i][j][0] == distance:
|
|
AngularerrorC4[0][i] = Data[i][j][7]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
print "i: ", i," j: ", j
|
|
if Data[i][j][1] == 1.25 and Data[i][j][0] == distance:
|
|
print Data[i][j][7]
|
|
AngularerrorC4[1][i] = Data[i][j][7]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.5 and Data[i][j][0] == distance:
|
|
AngularerrorC4[2][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.75 and Data[i][j][0] == distance:
|
|
AngularerrorC4[3][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 2.0 and Data[i][j][0] == distance:
|
|
AngularerrorC4[4][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
i += 1
|
|
|
|
print "AngularerrorC4: ", AngularerrorC4[0]
|
|
print "AngularerrorC4: ", AngularerrorC4[1]
|
|
print "AngularerrorC4: ", AngularerrorC4[2]
|
|
print "AngularerrorC4: ", AngularerrorC4[3]
|
|
print "AngularerrorC4: ", AngularerrorC4[4]
|
|
|
|
meanC4D1 = np.mean(AngularerrorC4[0])
|
|
meanC4D2 = np.mean(AngularerrorC4[1])
|
|
meanC4D3 = np.mean(AngularerrorC4[2])
|
|
meanC4D4 = np.mean(AngularerrorC4[3])
|
|
meanC4D5 = np.mean(AngularerrorC4[4])
|
|
|
|
stdC4D1 = np.std(AngularerrorC4[0])
|
|
stdC4D2 = np.std(AngularerrorC4[1])
|
|
stdC4D3 = np.std(AngularerrorC4[2])
|
|
stdC4D4 = np.std(AngularerrorC4[3])
|
|
stdC4D5 = np.std(AngularerrorC4[4])
|
|
|
|
meanC4 = [meanC4D1,meanC4D2,meanC4D3,meanC4D4,meanC4D5]
|
|
stdC4 = [stdC4D1,stdC4D2,stdC4D3,stdC4D4,stdC4D5]
|
|
|
|
# C5
|
|
distance = 2.0
|
|
i = 0
|
|
while i < 14:
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.0 and Data[i][j][0] == distance:
|
|
AngularerrorC5[0][i] = Data[i][j][7]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
print "i: ", i," j: ", j
|
|
if Data[i][j][1] == 1.25 and Data[i][j][0] == distance:
|
|
print Data[i][j][7]
|
|
AngularerrorC5[1][i] = Data[i][j][7]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.5 and Data[i][j][0] == distance:
|
|
AngularerrorC5[2][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 1.75 and Data[i][j][0] == distance:
|
|
AngularerrorC5[3][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Data[i][j][1] == 2.0 and Data[i][j][0] == distance:
|
|
AngularerrorC5[4][i] = Data[i][j][7]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
i += 1
|
|
|
|
print "AngularerrorC5: ", AngularerrorC5[0]
|
|
print "AngularerrorC5: ", AngularerrorC5[1]
|
|
print "AngularerrorC5: ", AngularerrorC5[2]
|
|
print "AngularerrorC5: ", AngularerrorC5[3]
|
|
print "AngularerrorC5: ", AngularerrorC5[4]
|
|
|
|
meanC5D1 = np.mean(AngularerrorC5[0])
|
|
meanC5D2 = np.mean(AngularerrorC5[1])
|
|
meanC5D3 = np.mean(AngularerrorC5[2])
|
|
meanC5D4 = np.mean(AngularerrorC5[3])
|
|
meanC5D5 = np.mean(AngularerrorC5[4])
|
|
|
|
stdC5D1 = np.std(AngularerrorC5[0])
|
|
stdC5D2 = np.std(AngularerrorC5[1])
|
|
stdC5D3 = np.std(AngularerrorC5[2])
|
|
stdC5D4 = np.std(AngularerrorC5[3])
|
|
stdC5D5 = np.std(AngularerrorC5[4])
|
|
|
|
meanC5 = [meanC5D1,meanC5D2,meanC5D3,meanC5D4,meanC5D5]
|
|
stdC5 = [stdC5D1,stdC5D2,stdC5D3,stdC5D4,stdC5D5]
|
|
|
|
#######################################################################################
|
|
|
|
|
|
path ="/home/mmbrian/3D_Gaze_Tracking/work/results/2D3D/"
|
|
|
|
Datatwo1 = np.load(path + "p5_2d3d_all.npy")
|
|
Datatwo2 = np.load(path + "p7_2d3d_all.npy")
|
|
Datatwo3 = np.load(path + "p10_2d3d_all.npy")
|
|
Datatwo4 = np.load(path + "p11_2d3d_all.npy")
|
|
Datatwo5 = np.load(path + "p12_2d3d_all.npy")
|
|
Datatwo6 = np.load(path + "p13_2d3d_all.npy")
|
|
Datatwo7 = np.load(path + "p14_2d3d_all.npy")
|
|
Datatwo8 = np.load(path + "p15_2d3d_all.npy")
|
|
Datatwo9 = np.load(path + "p16_2d3d_all.npy")
|
|
Datatwo10 = np.load(path + "p20_2d3d_all.npy")
|
|
Datatwo11 = np.load(path + "p21_2d3d_all.npy")
|
|
Datatwo12 = np.load(path + "p24_2d3d_all.npy")
|
|
Datatwo13 = np.load(path + "p25_2d3d_all.npy")
|
|
Datatwo14 = np.load(path + "p26_2d3d_all.npy")
|
|
|
|
Datatwo = [Datatwo1,Datatwo2,Datatwo3,Datatwo4,Datatwo5,Datatwo6,Datatwo7,Datatwo8,Datatwo9,Datatwo10,Datatwo11,Datatwo12,Datatwo13,Datatwo14]
|
|
|
|
Participantmean = []
|
|
for i in xrange(5):
|
|
Participantmean.append(float(0))
|
|
yerrup = []
|
|
for i in xrange(5):
|
|
yerrup.append(float(0))
|
|
yerrdown = []
|
|
for i in xrange(5):
|
|
yerrdown.append(float(0))
|
|
|
|
maxvalue = []
|
|
for i in xrange(5):
|
|
maxvalue.append(float(0))
|
|
minvalue = []
|
|
for i in xrange(5):
|
|
minvalue.append(float(0))
|
|
|
|
Activitymax = []
|
|
for i in xrange(5):
|
|
Activitymax.append([])
|
|
for j in xrange(15):
|
|
Activitymax[i].append(float(0))
|
|
|
|
Activitymin = []
|
|
for i in xrange(5):
|
|
Activitymin.append([])
|
|
for j in xrange(15):
|
|
Activitymin[i].append(float(0))
|
|
|
|
AngularerrortwoC1 = []
|
|
for i in xrange(5):
|
|
AngularerrortwoC1.append([])
|
|
for j in xrange(14):
|
|
AngularerrortwoC1[i].append(float(0))
|
|
|
|
AngularerrortwoC2 = []
|
|
for i in xrange(5):
|
|
AngularerrortwoC2.append([])
|
|
for j in xrange(14):
|
|
AngularerrortwoC2[i].append(float(0))
|
|
|
|
AngularerrortwoC3 = []
|
|
for i in xrange(5):
|
|
AngularerrortwoC3.append([])
|
|
for j in xrange(14):
|
|
AngularerrortwoC3[i].append(float(0))
|
|
|
|
AngularerrortwoC4 = []
|
|
for i in xrange(5):
|
|
AngularerrortwoC4.append([])
|
|
for j in xrange(14):
|
|
AngularerrortwoC4[i].append(float(0))
|
|
|
|
AngularerrortwoC5 = []
|
|
for i in xrange(5):
|
|
AngularerrortwoC5.append([])
|
|
for j in xrange(14):
|
|
AngularerrortwoC5[i].append(float(0))
|
|
|
|
# C1
|
|
distance = 1.0
|
|
i = 0
|
|
while i < 14:
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.0 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC1[0][i] = Datatwo[i][j][2]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
print "i: ", i," j: ", j
|
|
if Datatwo[i][j][1] == 1.25 and Datatwo[i][j][0] == distance:
|
|
print Datatwo[i][j][7]
|
|
AngularerrortwoC1[1][i] = Datatwo[i][j][2]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.5 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC1[2][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.75 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC1[3][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 2.0 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC1[4][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
i += 1
|
|
|
|
print "AngularerrortwoC1: ", AngularerrortwoC1[0]
|
|
print "AngularerrortwoC1: ", AngularerrortwoC1[1]
|
|
print "AngularerrortwoC1: ", AngularerrortwoC1[2]
|
|
print "AngularerrortwoC1: ", AngularerrortwoC1[3]
|
|
print "AngularerrortwoC1: ", AngularerrortwoC1[4]
|
|
|
|
meantwoC1D1 = np.mean(AngularerrortwoC1[0])
|
|
meantwoC1D2 = np.mean(AngularerrortwoC1[1])
|
|
meantwoC1D3 = np.mean(AngularerrortwoC1[2])
|
|
meantwoC1D4 = np.mean(AngularerrortwoC1[3])
|
|
meantwoC1D5 = np.mean(AngularerrortwoC1[4])
|
|
|
|
stdtwoC1D1 = np.std(AngularerrortwoC1[0])
|
|
stdtwoC1D2 = np.std(AngularerrortwoC1[1])
|
|
stdtwoC1D3 = np.std(AngularerrortwoC1[2])
|
|
stdtwoC1D4 = np.std(AngularerrortwoC1[3])
|
|
stdtwoC1D5 = np.std(AngularerrortwoC1[4])
|
|
|
|
meantwoC1 = [meantwoC1D1,meantwoC1D2,meantwoC1D3,meantwoC1D4,meantwoC1D5]
|
|
stdtwoC1 = [stdtwoC1D1,stdtwoC1D2,stdtwoC1D3,stdtwoC1D4,stdtwoC1D5]
|
|
|
|
# C2
|
|
distance = 1.25
|
|
i = 0
|
|
while i < 14:
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.0 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC2[0][i] = Datatwo[i][j][2]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
print "i: ", i," j: ", j
|
|
if Datatwo[i][j][1] == 1.25 and Datatwo[i][j][0] == distance:
|
|
print Datatwo[i][j][7]
|
|
AngularerrortwoC2[1][i] = Datatwo[i][j][2]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.5 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC2[2][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.75 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC2[3][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 2.0 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC2[4][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
i += 1
|
|
|
|
print "AngularerrortwoC2: ", AngularerrortwoC2[0]
|
|
print "AngularerrortwoC2: ", AngularerrortwoC2[1]
|
|
print "AngularerrortwoC2: ", AngularerrortwoC2[2]
|
|
print "AngularerrortwoC2: ", AngularerrortwoC2[3]
|
|
print "AngularerrortwoC2: ", AngularerrortwoC2[4]
|
|
|
|
meantwoC2D1 = np.mean(AngularerrortwoC2[0])
|
|
meantwoC2D2 = np.mean(AngularerrortwoC2[1])
|
|
meantwoC2D3 = np.mean(AngularerrortwoC2[2])
|
|
meantwoC2D4 = np.mean(AngularerrortwoC2[3])
|
|
meantwoC2D5 = np.mean(AngularerrortwoC2[4])
|
|
|
|
stdtwoC2D1 = np.std(AngularerrortwoC2[0])
|
|
stdtwoC2D2 = np.std(AngularerrortwoC2[1])
|
|
stdtwoC2D3 = np.std(AngularerrortwoC2[2])
|
|
stdtwoC2D4 = np.std(AngularerrortwoC2[3])
|
|
stdtwoC2D5 = np.std(AngularerrortwoC2[4])
|
|
|
|
meantwoC2 = [meantwoC2D1,meantwoC2D2,meantwoC2D3,meantwoC2D4,meantwoC2D5]
|
|
stdtwoC2 = [stdtwoC2D1,stdtwoC2D2,stdtwoC2D3,stdtwoC2D4,stdtwoC2D5]
|
|
|
|
# C3
|
|
distance = 1.5
|
|
i = 0
|
|
while i < 14:
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.0 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC3[0][i] = Datatwo[i][j][2]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
print "i: ", i," j: ", j
|
|
if Datatwo[i][j][1] == 1.25 and Datatwo[i][j][0] == distance:
|
|
print Datatwo[i][j][7]
|
|
AngularerrortwoC3[1][i] = Datatwo[i][j][2]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.5 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC3[2][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.75 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC3[3][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 2.0 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC3[4][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
i += 1
|
|
|
|
print "AngularerrortwoC3: ", AngularerrortwoC3[0]
|
|
print "AngularerrortwoC3: ", AngularerrortwoC3[1]
|
|
print "AngularerrortwoC3: ", AngularerrortwoC3[2]
|
|
print "AngularerrortwoC3: ", AngularerrortwoC3[3]
|
|
print "AngularerrortwoC3: ", AngularerrortwoC3[4]
|
|
|
|
meantwoC3D1 = np.mean(AngularerrortwoC3[0])
|
|
meantwoC3D2 = np.mean(AngularerrortwoC3[1])
|
|
meantwoC3D3 = np.mean(AngularerrortwoC3[2])
|
|
meantwoC3D4 = np.mean(AngularerrortwoC3[3])
|
|
meantwoC3D5 = np.mean(AngularerrortwoC3[4])
|
|
|
|
stdtwoC3D1 = np.std(AngularerrortwoC3[0])
|
|
stdtwoC3D2 = np.std(AngularerrortwoC3[1])
|
|
stdtwoC3D3 = np.std(AngularerrortwoC3[2])
|
|
stdtwoC3D4 = np.std(AngularerrortwoC3[3])
|
|
stdtwoC3D5 = np.std(AngularerrortwoC3[4])
|
|
|
|
meantwoC3 = [meantwoC3D1,meantwoC3D2,meantwoC3D3,meantwoC3D4,meantwoC3D5]
|
|
stdtwoC3 = [stdtwoC3D1,stdtwoC3D2,stdtwoC3D3,stdtwoC3D4,stdtwoC3D5]
|
|
|
|
# C4
|
|
distance = 1.75
|
|
i = 0
|
|
while i < 14:
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.0 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC4[0][i] = Datatwo[i][j][2]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
print "i: ", i," j: ", j
|
|
if Datatwo[i][j][1] == 1.25 and Datatwo[i][j][0] == distance:
|
|
print Datatwo[i][j][7]
|
|
AngularerrortwoC4[1][i] = Datatwo[i][j][2]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.5 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC4[2][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.75 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC4[3][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 2.0 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC4[4][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
i += 1
|
|
|
|
print "AngularerrortwoC4: ", AngularerrortwoC4[0]
|
|
print "AngularerrortwoC4: ", AngularerrortwoC4[1]
|
|
print "AngularerrortwoC4: ", AngularerrortwoC4[2]
|
|
print "AngularerrortwoC4: ", AngularerrortwoC4[3]
|
|
print "AngularerrortwoC4: ", AngularerrortwoC4[4]
|
|
|
|
meantwoC4D1 = np.mean(AngularerrortwoC4[0])
|
|
meantwoC4D2 = np.mean(AngularerrortwoC4[1])
|
|
meantwoC4D3 = np.mean(AngularerrortwoC4[2])
|
|
meantwoC4D4 = np.mean(AngularerrortwoC4[3])
|
|
meantwoC4D5 = np.mean(AngularerrortwoC4[4])
|
|
|
|
stdtwoC4D1 = np.std(AngularerrortwoC4[0])
|
|
stdtwoC4D2 = np.std(AngularerrortwoC4[1])
|
|
stdtwoC4D3 = np.std(AngularerrortwoC4[2])
|
|
stdtwoC4D4 = np.std(AngularerrortwoC4[3])
|
|
stdtwoC4D5 = np.std(AngularerrortwoC4[4])
|
|
|
|
meantwoC4 = [meantwoC4D1,meantwoC4D2,meantwoC4D3,meantwoC4D4,meantwoC4D5]
|
|
stdtwoC4 = [stdtwoC4D1,stdtwoC4D2,stdtwoC4D3,stdtwoC4D4,stdtwoC4D5]
|
|
|
|
# C5
|
|
distance = 2.0
|
|
i = 0
|
|
while i < 14:
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.0 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC5[0][i] = Datatwo[i][j][2]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
print "i: ", i," j: ", j
|
|
if Datatwo[i][j][1] == 1.25 and Datatwo[i][j][0] == distance:
|
|
print Datatwo[i][j][7]
|
|
AngularerrortwoC5[1][i] = Datatwo[i][j][2]
|
|
break
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.5 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC5[2][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 1.75 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC5[3][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
j = 0
|
|
while j < 25:
|
|
if Datatwo[i][j][1] == 2.0 and Datatwo[i][j][0] == distance:
|
|
AngularerrortwoC5[4][i] = Datatwo[i][j][2]
|
|
j = 25
|
|
else:
|
|
j += 1
|
|
i += 1
|
|
|
|
print "AngularerrortwoC5: ", AngularerrortwoC5[0]
|
|
print "AngularerrortwoC5: ", AngularerrortwoC5[1]
|
|
print "AngularerrortwoC5: ", AngularerrortwoC5[2]
|
|
print "AngularerrortwoC5: ", AngularerrortwoC5[3]
|
|
print "AngularerrortwoC5: ", AngularerrortwoC5[4]
|
|
|
|
meantwoC5D1 = np.mean(AngularerrortwoC5[0])
|
|
meantwoC5D2 = np.mean(AngularerrortwoC5[1])
|
|
meantwoC5D3 = np.mean(AngularerrortwoC5[2])
|
|
meantwoC5D4 = np.mean(AngularerrortwoC5[3])
|
|
meantwoC5D5 = np.mean(AngularerrortwoC5[4])
|
|
|
|
stdtwoC5D1 = np.std(AngularerrortwoC5[0])
|
|
stdtwoC5D2 = np.std(AngularerrortwoC5[1])
|
|
stdtwoC5D3 = np.std(AngularerrortwoC5[2])
|
|
stdtwoC5D4 = np.std(AngularerrortwoC5[3])
|
|
stdtwoC5D5 = np.std(AngularerrortwoC5[4])
|
|
|
|
meantwoC5 = [meantwoC5D1,meantwoC5D2,meantwoC5D3,meantwoC5D4,meantwoC5D5]
|
|
stdtwoC5 = [stdtwoC5D1,stdtwoC5D2,stdtwoC5D3,stdtwoC5D4,stdtwoC5D5]
|
|
|
|
|
|
|
|
|
|
|
|
######################################################################################
|
|
|
|
N = 5
|
|
ind = np.asarray([0.25,1.25,2.25,3.25,4.25])
|
|
|
|
width = 0.5 # the width of the bars
|
|
|
|
x1 = [0.375,1.375,2.375,3.375,4.375]
|
|
x2 = [0.425,1.425,2.425,3.425,4.425]
|
|
x3 = [0.475,1.475,2.475,3.475,4.475]
|
|
x4 = [0.525,1.525,2.525,3.525,4.525]
|
|
x5 = [0.575,1.575,2.575,3.575,4.575]
|
|
x6 = [0.625,1.625,2.625,3.625,4.625]
|
|
|
|
fig = plt.figure(figsize=(14.0, 10.0))
|
|
|
|
|
|
|
|
ax = fig.add_subplot(111)
|
|
|
|
|
|
|
|
# rects1 = ax.bar(ind, Participantmean,width, color='r',edgecolor='black',)#, hatch='//')
|
|
rects1 = ax.errorbar(x1, meanC1,yerr=[stdC1,stdC1],fmt='o',color='blue',ecolor='blue',lw=3, capsize=5, capthick=2)
|
|
plt.plot(x1, meanC1, marker="o", linestyle='-',lw=3,color='blue',label = r'2D-to-2D Calibration Depth 1')
|
|
|
|
# rects2 =ax.errorbar(x2, meanC2,yerr=[stdC2,stdC2],fmt='o',color='red',ecolor='red',lw=3, capsize=5, capthick=2)
|
|
# plt.plot(x2, meanC2, marker="o", linestyle='-',lw=3,color='red')
|
|
|
|
rects3 = ax.errorbar(x3, meanC3,yerr=[stdC3,stdC3],fmt='o',color='orange',ecolor='orange',lw=3, capsize=5, capthick=2)
|
|
plt.plot(x3, meanC3, marker="o", linestyle='-',lw=3,color='orange',label = r'2D-to-2D Calibration Depth 3')
|
|
#
|
|
# rects4 =ax.errorbar(x4, meanC4,yerr=[stdC4,stdC4],fmt='o',color='green',ecolor='green',lw=3, capsize=5, capthick=2)
|
|
# plt.plot(x4, meanC4, marker="o", linestyle='-',lw=3,color='green')
|
|
|
|
rects5 =ax.errorbar(x5, meanC5,yerr=[stdC5,stdC5],fmt='o',color='red',ecolor='red',lw=3, capsize=5, capthick=2)
|
|
plt.plot(x5, meanC5, marker="o", linestyle='-',lw=3,color='red',label = r'2D-to-2D Calibration Depth 5')
|
|
|
|
|
|
|
|
# rects1 = ax.bar(ind, Participantmean,width, color='r',edgecolor='black',)#, hatch='//')
|
|
rects2 = ax.errorbar(x2, meantwoC1,yerr=[stdtwoC1,stdtwoC1],fmt='o',color='blue',ecolor='blue',lw=3, capsize=5, capthick=2)
|
|
plt.plot(x2, meantwoC1, marker="o", linestyle='--',lw=3,color='blue',label = r'2D-to-3D Calibration Depth 1')
|
|
|
|
# rects2 =ax.errorbar(x2, meanC2,yerr=[stdC2,stdC2],fmt='o',color='red',ecolor='red',lw=3, capsize=5, capthick=2)
|
|
# plt.plot(x2, meanC2, marker="o", linestyle='-',lw=3,color='red')
|
|
|
|
rects4 = ax.errorbar(x4, meantwoC3,yerr=[stdtwoC3,stdtwoC3],fmt='o',color='orange',ecolor='orange',lw=3, capsize=5, capthick=2)
|
|
plt.plot(x4, meantwoC3, marker="o", linestyle='--',lw=3,color='orange',label = r'2D-to-3D Calibration Depth 3')
|
|
#
|
|
# rects4 =ax.errorbar(x4, meanC4,yerr=[stdC4,stdC4],fmt='o',color='green',ecolor='green',lw=3, capsize=5, capthick=2)
|
|
# plt.plot(x4, meanC4, marker="o", linestyle='-',lw=3,color='green')
|
|
|
|
rects6 =ax.errorbar(x6, meantwoC5,yerr=[stdtwoC5,stdtwoC5],fmt='o',color='red',ecolor='red',lw=3, capsize=5, capthick=2)
|
|
plt.plot(x6, meantwoC5, marker="o", linestyle='--',lw=3,color='red',label = r'2D-to-3D Calibration Depth 5')
|
|
|
|
|
|
ax.set_ylabel('Angular Error',fontsize=22)
|
|
ax.set_xlabel('Depth',fontsize=22)
|
|
ax.set_xticks(ind+0.25)
|
|
ax.set_xticklabels( ('D1', 'D2', 'D3','D4', 'D5') ,fontsize=16)
|
|
|
|
TOPICs = [0.0,0.5,1.5,2.5,3.5,4.5,5.0]#,110]#,120]
|
|
print TOPICs
|
|
LABELs = ["",r'D1 - 1m',r'D2 - 1.25m', r'D3 - 1.5m', r'D4 - 1.75m', r'D5 - 2.0m', ""]#, ""]#, ""]
|
|
|
|
# fig.canvas.set_window_title('Distance Error Correlation')
|
|
plt.xticks(TOPICs, LABELs,fontsize=18)
|
|
|
|
# legend([rects1,rects2,rects3,rects4,rects5], [r'\LARGE\textbf{Calibration Distance 1}', r'\LARGE\textbf{Calibration Distance 2}',r'\LARGE\textbf{Calibration Distance 3}', r'\LARGE\textbf{Calibration Distance 4}',r'\LARGE\textbf{Calibration Distance 5}'], loc='lower right')
|
|
legend(fontsize=20,loc='best')
|
|
|
|
TOPICS = [-4.0,-2.0, 0.0,2.0,4.0,6.0,8.0,10.0,12,14,16,18,20,22,24]#,110]#,120]
|
|
print TOPICS
|
|
LABELS = [r'', r'',r'0',r'2', r'4', r'6', r'8', r'10', r'12', r'14', r'16', r'18', r'20', r'22', r'24']#, ""]#, ""]
|
|
|
|
# fig.canvas.set_window_title('Accuracy - Activity Statistics')
|
|
plt.yticks(TOPICS, LABELS,fontsize=18)
|
|
|
|
def autolabel(rects):
|
|
# attach some text labels
|
|
for rect in rects:
|
|
height = rect.get_height()
|
|
ax.text(0.26+rect.get_x()+rect.get_width()/2., height +0.35, "%.2f"%float(height),
|
|
ha='center', va='bottom',fontweight='bold',fontsize=13.5)
|
|
|
|
# autolabel(rects1)
|
|
|
|
|
|
left = 0.1 # the left side of the subplots of the figure
|
|
right = 0.975 # the right side of the subplots of the figure
|
|
bottom = 0.075 # the bottom of the subplots of the figure
|
|
top = 0.925 # the top of the subplots of the figure
|
|
wspace = 0.2 # the amount of width reserved for blank space between subplots
|
|
hspace = 0.4 # the amount of height reserved for white space between subplots
|
|
|
|
plt.subplots_adjust(left=left, bottom=bottom, right=right, top=top, wspace=wspace, hspace=hspace)
|
|
plt.show()
|
|
|
|
|
|
means = [meanC1, meanC2, meanC3, meanC4, meanC5]
|
|
print meanC1
|
|
print meanC2
|
|
print meanC3
|
|
print meanC4
|
|
print meanC5
|
|
|
|
fixationinfos_list_path = "MeansC1D2D2.npy"
|
|
fixationinfos_list_csv_path = "MeansC1D2D2.csv"
|
|
np.save(fixationinfos_list_path,np.asarray(means))
|
|
np.savetxt(fixationinfos_list_csv_path,np.asarray(means), delimiter=",", fmt="%f")
|
|
|
|
## fixationinfos_list_path = "Activitymin_"+str(activity)+".npy"
|
|
## fixationinfos_list_csv_path = "Activitymin_"+str(activity)+".csv"
|
|
## np.save(fixationinfos_list_path,np.asarray(Activitymin))
|
|
## np.savetxt(fixationinfos_list_csv_path,np.asarray(Activitymin), delimiter=",", fmt="%s")
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(sys.argv[1:])
|
|
|