gazesim/code/parallax_2D3D_3Cdepths.py
2016-03-09 19:52:35 +01:00

249 lines
No EOL
9.4 KiB
Python

from __future__ import division
import os
import seaborn
from pylab import rcParams
import cv2
import numpy as np
from numpy import linalg as LA
from time import time
from itertools import combinations
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from minimize import findInitialW, _q, g, minimizeEnergy, g3D3D, findW3D3D
from minimize import g as gaze_ray
from geom import getSphericalCoords, getAngularDiff
from vector import Vector as v
# from experiment import Experiment
from sim import GazeSimulation
from recording.util.tools import is_outlier
from recording.tracker import readCameraParams
from geom import getRotationMatrix
class Experiment:
def performExperiment(self):
print 'Running Experiment...'
start = time()
self.__run__()
self.runningTime = time() - start
print 'Running Time:', self.runningTime
def __run__(self):
pass
class Parallax2Dto3DMapping(Experiment):
def __run__(self):
sim = GazeSimulation(log = False)
sim.place_eyeball_on_scene_camera = False
sim.setEyeRelativeToSceneCamera(v(-65, -33, -73))
# sim.setEyeRelativeToSceneCamera(v(-65, -33, 0)) # assuming eyeball and scene camera are coplanar i.e. e = (e.x, e.y, 0)
sim.setCalibrationDepth(1 * 1000) # mm, wrt scene camera
sim.setTestDepth(1.5 * 1000)
sim.calibration_grid = True
sim.calibration_random_depth = False
sim.test_grid = True
sim.test_random_depth = False
sim.test_random_fixed_depth = False
depths = map(lambda d:d*1000, [1, 1.25, 1.5, 1.75, 2.0])
print '> Computing results for multiple calibration depths...'
results = []
for num_of_calibration_depths in xrange(1, 6): # from 1 calibration depths to 5
print '> Considering only %s calibration depth(s)...' %num_of_calibration_depths
sim.reset()
if num_of_calibration_depths != 3: continue
for calibs in combinations(depths, num_of_calibration_depths):
aae_2ds_aae = []
aae_2ds_phe = []
aae_3ds_aae = []
aae_3ds_phe = []
aae_3D3Ds = [] # angular error
# Now calibs is a set of depths, from each of those we need calibration data
# print calibs
if not calibs in [(1000., 1250., 1500.), (1250., 1500., 1750.), (1500., 1750., 2000.)]:
continue
print 'curr calibs', calibs
calibs = list(calibs)
cp, ct = [], []
sim.reset()
sim.setCalibrationDepth(calibs)
# Perform calibration
sim.runCalibration()
cp, ct, p3d = sim.tr_pupil_locations, sim.calibration_points, sim.tr_3d_pupil_locations
# target positions are computed relative to the scene CCS
ti = map(lambda target: v(target) - v(sim.scene_camera.t), ct)
# Computing pupil pose for each gaze
ni = map(lambda p: (v(p)-v(sim.sclera_pos)).norm(), p3d) # ground truth gaze vectors
w, e, w0 = minimizeEnergy(cp, ti)
e = v(e)
# transforming pupil pose to eye camera CS
eyeR = np.array(sim.eye_camera.R[:3])
ni = map(lambda pose: eyeR.dot(np.array(pose)), ni)
R, e3d3d = minimizeEnergy(ni, ti, pose_given=True)
e3d3d = v(e3d3d)
# R = LA.inv(R)
# Now we have calibration data from multiple depths, we can test on all depths
for test_depth in depths:
sim.setTestDepth(test_depth)
aae_2d_aae, aae_2d_phe, aae_2d_std, _ = sim.runTest() # 2nd one is PHE
aae_2ds_aae.append((aae_2d_aae, aae_2d_std))
aae_2ds_phe.append(aae_2d_phe)
# Fetching test points
t, p, p3d = sim.test_points, sim.te_pupil_locations, sim.te_3d_pupil_locations
t = map(lambda target: v(target) - v(sim.scene_camera.t), t) # target coords in scene CCS
# 3D3D
t_3d3d = t[:]
ni = map(lambda p: v(v(p)-v(sim.sclera_pos)).norm(), p3d) # ground truth gaze vectors
# transforming pupil pose to eye camera CS
ni = map(lambda r: v(eyeR.dot(np.array(r))), ni)
# applying estimated rotation to pose vector in eye camera coordinates (Rn)
# R is estimated rotation between scene camera and eye coordinate system (not eye camera!)
# in other words, R is the rotation part of e
Rni = map(lambda n: v(R.dot(np.array(n))), ni) # now ready to compare Rn with t-e
# Intersecting gaze rays originating from the eye with the planes defined by each
# target. then we can simply compute angular error between each intersection and
# the corresponding 3D target
gis = map(lambda vec: v(vec), Rni) # gaze rays originating from eyeball
# we multiply g such that it hits t's z-plane i.e. multiply all coordinates by factor (t.z-e.z)/g.z
# then we add e to the final g so that it originates from scene camera. now both g and t are in the
# same coordinate system and originate from the same point, so we can compare them
gprimes = map(lambda tg: v(((tg[0].z - e3d3d.z)/tg[1].z)*tg[1] + e3d3d), zip(t_3d3d, gis))
AE = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gprimes, t_3d3d))
N = len(t)
AAE = np.mean(AE)
STD = np.std(AE)
m, M = min(AE), max(AE)
aae_3D3Ds.append((AAE, STD))
qi = map(_q, p) # computing feature vectors from raw pupil coordinates in 2D
# computing unit gaze vectors corresponding to pupil positions
# here we use the computed mapping matrix w
gis = map(lambda q: g(q, w), qi)
# Intersecting gaze rays originating from the eye with the planes defined by each
# target. then we can simply compute angular error between each intersection and
# the corresponding 3D target
t = map(lambda vec: v(vec), t)
gis = map(lambda vec: v(vec), gis)
gprimes = map(lambda tg: v(((tg[0].z - e.z)/tg[1].z)*tg[1] + e), zip(t, gis))
AE = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gprimes, t))
N = len(t)
AAE = np.mean(AE)
STD = np.std(AE)
m, M = min(AE), max(AE)
# Computing physical distance error (in meters)
PHE = list((u-v).mag/1000 for u,v in zip(t, gprimes))
N = len(t)
APHE = np.mean(PHE)
PHE_STD = np.std(PHE)
PHE_m, PHE_M = min(PHE), max(PHE)
aae_3ds_aae.append((AAE, STD))
aae_3ds_phe.append((PHE, PHE_STD))
results.append([calibs, aae_2ds_aae, aae_3ds_aae, aae_3D3Ds])
plt.ylabel('Angular Error')
plt.xlabel('Depth')
fig = plt.figure(figsize=(14.0, 10.0))
ax = fig.add_subplot(111)
clrs = ['blue', 'red', 'orange']
depth_map = {1000.:1, 1250.:2, 1500.:3, 1750.:4, 2000.:5}
cdlabel = lambda c: ' + '.join(map(str, map(lambda d: depth_map[d], c)))
x1 = [0.375,1.375,2.375,3.375,4.375]
x2 = [0.425,1.425,2.425,3.425,4.425]
x3 = [0.475,1.475,2.475,3.475,4.475]
x4 = [0.525,1.525,2.525,3.525,4.525]
x5 = [0.575,1.575,2.575,3.575,4.575]
x6 = [0.625,1.625,2.625,3.625,4.625]
xrange_2d2d = [x1, x3, x5]
xrange_2d3d = [x2, x4, x6]
for i in [0, 1, 2]:
res = results[i]
calibs = res[0]
_xrange = xrange_2d2d[i]
aae_2d2d = np.array(res[1])[:,0]
std_2d2d = np.array(res[1])[:,1]
rects1 = ax.errorbar(_xrange, aae_2d2d,yerr=[std_2d2d, std_2d2d],fmt='o',color=clrs[i],ecolor=clrs[i],lw=3, capsize=5, capthick=2)
plt.plot(_xrange, aae_2d2d, marker="o", linestyle='-',lw=3,color=clrs[i],label = '2D-to-2D Calibration Depth '+cdlabel(calibs))
for i in [0, 1, 2]:
res = results[i]
calibs = res[0]
_xrange = xrange_2d3d[i]
aae_2d3d = np.array(res[2])[:,0]
std_2d3d = np.array(res[2])[:,1]
rects2 = ax.errorbar(_xrange, aae_2d3d,yerr=[std_2d3d, std_2d3d],fmt='o',color=clrs[i],ecolor=clrs[i],lw=3, capsize=5, capthick=2)
plt.plot(_xrange, aae_2d3d, marker="o", linestyle='--',lw=3,color=clrs[i],label ='2D-to-3D Calibration Depth '+cdlabel(calibs))
for i in [0, 1, 2]:
res = results[i]
calibs = res[0]
_xrange = xrange_2d2d[i]
aae_3d3d = np.array(res[3])[:,0]
std_3d3d = np.array(res[3])[:,1]
rects3 = ax.errorbar(_xrange, aae_3d3d,yerr=[std_3d3d, std_3d3d],fmt='o',color=clrs[i],ecolor=clrs[i],lw=3, capsize=5, capthick=2)
plt.plot(_xrange, aae_3d3d, marker="o", linestyle='-.',lw=3,color=clrs[i],label ='3D-to-3D Calibration Depth '+cdlabel(calibs))
ax.set_ylim(0, 1.5)
ax.set_ylabel(r'Angular Error',fontsize=22, fontweight='bold')
ax.set_xlabel(r'Depth',fontsize=22, fontweight='bold')
TOPICS = [-0.2, 0, 0.2, 0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4]#,110]#,120]
LABELS = [r'', r'0', r'0.2',r'0.4',r'0.6', r'0.8', r'1.0', r'1.2', r'1.4', r'1.6', r'1.8', r'2.0', r'2.2', r'2.4']#, ""]#, ""]
plt.yticks(TOPICS, LABELS,fontsize=18)
# plt.legend(fontsize=20)
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
ncol=3, mode="expand", borderaxespad=0., fontsize=15)
plt.yticks(fontsize='18')
TOPICs = [0.0,0.5,1.5,2.5,3.5,4.5,5.0]
LABELs = ['', 'D1 - 1m', 'D2 - 1.25m', 'D3 - 1.5m', 'D4 - 1.75m', 'D5 - 2.0m', '']
# ax.set_xticklabels(LABELs,fontsize=18)
plt.xticks(TOPICs, LABELs,fontsize=18)
left = 0.1 # the left side of the subplots of the figure
right = 0.975 # the right side of the subplots of the figure
bottom = 0.075 # the bottom of the subplots of the figure
top = 0.925 # the top of the subplots of the figure
wspace = 0.2 # the amount of width reserved for blank space between subplots
hspace = 0.4 # the amount of height reserved for white space between subplots
plt.subplots_adjust(left=left, bottom=bottom, right=right, top=top, wspace=wspace, hspace=hspace)
plt.show()
if __name__ == '__main__':
# This also does 3D gaze estimation and plots estimation results for both 3D and 2D estimation
ex = Parallax2Dto3DMapping()
ex.performExperiment()