996 lines
40 KiB
Python
996 lines
40 KiB
Python
from __future__ import division
|
|
|
|
import os, sys
|
|
import seaborn
|
|
from pylab import rcParams
|
|
import cv2
|
|
|
|
import numpy as np
|
|
from numpy import linalg as LA
|
|
from time import time
|
|
from itertools import combinations
|
|
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib.pyplot import legend
|
|
import matplotlib.patches as mpatches
|
|
|
|
from minimize import findInitialW, _q, g, minimizeEnergy, g3D3D, findW3D3D
|
|
from minimize import g as gaze_ray
|
|
from geom import getSphericalCoords, getAngularDiff
|
|
from vector import Vector as v
|
|
|
|
from sim import GazeSimulation
|
|
from recording.util.tools import is_outlier
|
|
from recording.tracker import readCameraParams
|
|
from geom import getRotationMatrix
|
|
|
|
import pdb
|
|
|
|
PARTICIPANTS = ['p10', 'p16', 'p13', 'p24', 'p5', 'p14', 'p26', 'p12', 'p20', 'p7', 'p15', 'p11', 'p21', 'p25']
|
|
|
|
class Experiment:
|
|
def performExperiment(self):
|
|
print 'Running Experiment...'
|
|
start = time()
|
|
self.__run__()
|
|
self.runningTime = time() - start
|
|
print 'Running Time:', self.runningTime
|
|
def __run__(self):
|
|
pass
|
|
|
|
class Parallax2Dto2DMapping(Experiment):
|
|
def __run__(self):
|
|
sim = GazeSimulation(log = False)
|
|
|
|
sim.place_eyeball_on_scene_camera = False
|
|
|
|
sim.setEyeRelativeToSceneCamera(v(-65, -33, -73))
|
|
|
|
sim.setCalibrationDepth(1 * 1000) # mm, wrt scene camera
|
|
sim.setTestDepth(1.5 * 1000)
|
|
|
|
sim.calibration_grid = True
|
|
sim.calibration_random_depth = False
|
|
sim.test_grid = True
|
|
sim.test_random_depth = False
|
|
sim.test_random_fixed_depth = False
|
|
|
|
sim.reset()
|
|
|
|
print 'scene_camera', sim.scene_camera.t
|
|
print 'calibration'
|
|
print len(sim.calibration_points)
|
|
# print sim.calibration_points
|
|
print min(np.array(sim.calibration_points)[:,0]) - sim.scene_camera.t[0], max(np.array(sim.calibration_points)[:,0]) - sim.scene_camera.t[0]
|
|
print min(np.array(sim.calibration_points)[:,1]) - sim.scene_camera.t[1], max(np.array(sim.calibration_points)[:,1]) - sim.scene_camera.t[1]
|
|
print 'depths', set(np.array(sim.calibration_points)[:,2])
|
|
print 'test'
|
|
print len(sim.test_points)
|
|
print min(np.array(sim.test_points)[:,0]) - sim.scene_camera.t[0], max(np.array(sim.test_points)[:,0]) - sim.scene_camera.t[0]
|
|
print min(np.array(sim.test_points)[:,1]) - sim.scene_camera.t[1], max(np.array(sim.test_points)[:,1]) - sim.scene_camera.t[1]
|
|
print 'depths', set(np.array(sim.test_points)[:,2])
|
|
|
|
|
|
|
|
plt.ylabel('Y (mm)')
|
|
plt.xlabel('X (mm)')
|
|
plt.plot(np.array(sim.calibration_points)[:,0], np.array(sim.calibration_points)[:,1], 'bo')
|
|
plt.plot(np.array(sim.test_points)[:,0], np.array(sim.test_points)[:,1], 'ro')
|
|
plt.show()
|
|
|
|
# self.sim = sim
|
|
# visualize the setting in windows
|
|
|
|
class Parallax2Dto3DMapping(Experiment):
|
|
'''
|
|
IMPORTANT!
|
|
In all experiments, scene camera's rvec = (0, 0, 0) i.e. the corresponding rotation matrix is the identity matrix therefore
|
|
I have not included the dot production with this rotation matrix to convert points in world coordinates
|
|
into scene camera coordinates. however, one should know that if the scene camera is rotated differentl7y
|
|
this transformation is essential. I would add the corresponding computations later on.
|
|
'''
|
|
|
|
def __run__(self):
|
|
sim = GazeSimulation(log = False)
|
|
|
|
sim.place_eyeball_on_scene_camera = False
|
|
sim.setEyeRelativeToSceneCamera(v(-65, -33, -73))
|
|
# sim.setEyeRelativeToSceneCamera(v(-65, -33, 0)) # assuming eyeball and scene camera are coplanar i.e. e = (e.x, e.y, 0)
|
|
|
|
sim.setCalibrationDepth(1 * 1000) # mm, wrt scene camera
|
|
sim.setTestDepth(1.5 * 1000)
|
|
sim.calibration_grid = True
|
|
sim.calibration_random_depth = False
|
|
sim.test_grid = True
|
|
sim.test_random_depth = False
|
|
sim.test_random_fixed_depth = False
|
|
|
|
depths = map(lambda d:d*1000, [1, 1.25, 1.5, 1.75, 2.0])
|
|
print '> Computing results for multiple calibration depths...'
|
|
results, results_std = [], []
|
|
for num_of_calibration_depths in xrange(1, 6): # from 1 calibration depths to 5
|
|
print '> Considering only %s calibration depth(s)...' %num_of_calibration_depths
|
|
sim.reset()
|
|
aae_2ds_aae = []
|
|
aae_2ds_phe = []
|
|
aae_3ds_aae = []
|
|
aae_3ds_phe = []
|
|
aae_3D3Ds = [] # angular error
|
|
|
|
for calibs in combinations(depths, num_of_calibration_depths):
|
|
# Now calibs is a set of depths from each of which we need calibration data
|
|
print 'Current calibration depths', calibs
|
|
calibs = list(calibs)
|
|
cp, ct = [], []
|
|
sim.reset()
|
|
sim.setCalibrationDepth(calibs)
|
|
# Perform calibration
|
|
sim.runCalibration()
|
|
cp, ct, p3d = sim.tr_pupil_locations, sim.calibration_points, sim.tr_3d_pupil_locations
|
|
# target positions are computed relative to the scene CCS
|
|
ti = map(lambda target: v(target) - v(sim.scene_camera.t), ct)
|
|
# Computing pupil pose for each gaze
|
|
ni = map(lambda p: (v(p)-v(sim.sclera_pos)).norm(), p3d) # ground truth gaze vectors
|
|
|
|
w, e, w0 = minimizeEnergy(cp, ti)
|
|
e = v(e)
|
|
|
|
# transforming pupil pose to eye camera CS
|
|
eyeR = np.array(sim.eye_camera.R[:3])
|
|
ni = map(lambda pose: eyeR.dot(np.array(pose)), ni)
|
|
|
|
R, e3d3d = minimizeEnergy(ni, ti, pose_given=True)
|
|
# R = LA.inv(R)
|
|
e3d3d = v(e3d3d)
|
|
|
|
# Now we have calibration data from multiple depths, we can test on all depths
|
|
for test_depth in depths:
|
|
sim.setTestDepth(test_depth)
|
|
aae_2d_aae, aae_2d_phe, aae_2d_std, _ = sim.runTest() # last one is PHE std
|
|
aae_2ds_aae.append((aae_2d_aae, aae_2d_std))
|
|
aae_2ds_phe.append(aae_2d_phe)
|
|
# Fetching test points
|
|
t, p, p3d = sim.test_points, sim.te_pupil_locations, sim.te_3d_pupil_locations
|
|
t = map(lambda target: v(target) - v(sim.scene_camera.t), t) # target coords in scene CCS
|
|
|
|
# 3D3D
|
|
t_3d3d = t[:]
|
|
|
|
ni = map(lambda p: v(v(p)-v(sim.sclera_pos)).norm(), p3d) # ground truth gaze vectors
|
|
# transforming pupil pose to eye camera CS
|
|
ni = map(lambda r: v(eyeR.dot(np.array(r))), ni)
|
|
|
|
# applying estimated rotation to pose vector in eye camera coordinates (Rn)
|
|
# R is estimated rotation between scene camera and eye coordinate system (not eye camera!)
|
|
# in other words, R is the rotation part of e
|
|
Rni = map(lambda n: v(R.dot(np.array(n))), ni) # now ready to compare Rn with t-e
|
|
# Intersecting gaze rays originating from the eye with the planes defined by each
|
|
# target. then we can simply compute angular error between each intersection and
|
|
# the corresponding 3D target
|
|
gis = map(lambda vec: v(vec), Rni) # gaze rays originating from eyeball
|
|
# we multiply g such that it hits t's z-plane i.e. multiply all coordinates by factor (t.z-e.z)/g.z
|
|
# then we add e to the final g so that it originates from scene camera. now both g and t are in the
|
|
# same coordinate system and originate from the same point, so we can compare them
|
|
gprimes = map(lambda tg: v(((tg[0].z - e3d3d.z)/tg[1].z)*tg[1] + e3d3d), zip(t_3d3d, gis))
|
|
AE = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gprimes, t_3d3d))
|
|
|
|
N = len(t)
|
|
AAE = np.mean(AE)
|
|
STD = np.std(AE)
|
|
m, M = min(AE), max(AE)
|
|
aae_3D3Ds.append((AAE, STD))
|
|
|
|
|
|
qi = map(_q, p) # computing feature vectors from raw pupil coordinates in 2D
|
|
# computing unit gaze vectors corresponding to pupil positions
|
|
# here we use the computed mapping matrix w
|
|
gis = map(lambda q: g(q, w), qi)
|
|
|
|
# Intersecting gaze rays originating from the eye with the planes defined by each
|
|
# target. then we can simply compute angular error between each intersection and
|
|
# the corresponding 3D target
|
|
t = map(lambda vec: v(vec), t)
|
|
gis = map(lambda vec: v(vec), gis)
|
|
gprimes = map(lambda tg: v(((tg[0].z - e.z)/tg[1].z)*tg[1] + e), zip(t, gis))
|
|
|
|
AE = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gprimes, t))
|
|
N = len(t)
|
|
AAE = np.mean(AE)
|
|
STD = np.std(AE)
|
|
m, M = min(AE), max(AE)
|
|
|
|
# Computing physical distance error (in meters)
|
|
PHE = list((u-v).mag/1000 for u,v in zip(t, gprimes))
|
|
N = len(t)
|
|
APHE = np.mean(PHE)
|
|
PHE_STD = np.std(PHE)
|
|
PHE_m, PHE_M = min(PHE), max(PHE)
|
|
|
|
aae_3ds_aae.append((AAE, STD))
|
|
aae_3ds_phe.append((PHE, PHE_STD))
|
|
|
|
# results only contains AAE
|
|
results.append([np.mean(np.array(aae_2ds_aae)[:,0]), np.mean(np.array(aae_3ds_aae)[:,0]), np.mean(np.array(aae_3D3Ds)[:,0])])
|
|
results_std.append([np.std(np.array(aae_2ds_aae)[:,0]), np.std(np.array(aae_3ds_aae)[:,0]), np.std(np.array(aae_3D3Ds)[:,0])])
|
|
|
|
# Old plot code
|
|
######################################################################################################
|
|
# plt.ylabel('Angular Error')
|
|
# plt.xlabel('Depth')
|
|
|
|
# fig = plt.figure(figsize=(14.0, 10.0))
|
|
# ax = fig.add_subplot(111)
|
|
|
|
# clrs = ['b', 'r', 'orange']
|
|
|
|
|
|
# _xrange = [0.5,1.5,2.5,3.5,4.5]
|
|
# ax.plot(_xrange, [res[0] for res in results], 'r', label='2D-to-2D', marker="o", linestyle='-',lw=3)
|
|
# ax.plot(_xrange, [res[1] for res in results], 'b', label='2D-to-3D', marker="o", linestyle='-',lw=3)
|
|
# ax.plot(_xrange, [res[2] for res in results], 'g', label='3D-to-3D', marker="o", linestyle='-',lw=3)
|
|
|
|
# ax.set_ylabel(r'Angular Error',fontsize=22, fontweight='bold')
|
|
# ax.set_xlabel(r'Number of Calibration Depths',fontsize=22, fontweight='bold')
|
|
|
|
# plt.legend(fontsize=20)
|
|
# # plt.legend(loc="upper left", ncol=3, title=r"$d_c$")
|
|
# # plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
|
|
# # ncol=5, mode="expand", borderaxespad=0., fontsize=20)
|
|
# # plt.xticks(fontsize='18')
|
|
# plt.yticks(fontsize='18')
|
|
|
|
|
|
# TOPICs = [0.0,0.5,1.5,2.5,3.5,4.5,5.0]
|
|
# LABELs = ['', '1', '2', '3', '4', '5', '']
|
|
# # ax.set_xticklabels(LABELs,fontsize=18)
|
|
# plt.xticks(TOPICs, LABELs,fontsize=18)
|
|
|
|
# left = 0.1 # the left side of the subplots of the figure
|
|
# right = 0.975 # the right side of the subplots of the figure
|
|
# bottom = 0.075 # the bottom of the subplots of the figure
|
|
# top = 0.925 # the top of the subplots of the figure
|
|
# wspace = 0.2 # the amount of width reserved for blank space between subplots
|
|
# hspace = 0.4 # the amount of height reserved for white space between subplots
|
|
|
|
# plt.subplots_adjust(left=left, bottom=bottom, right=right, top=top, wspace=wspace, hspace=hspace)
|
|
# plt.show()
|
|
######################################################################################################
|
|
# New plot code based on EffectNumberofClusters.py
|
|
mean2D2D = [res[0] for res in results]
|
|
mean2D3D = [res[1] for res in results]
|
|
mean3D3D = [res[2] for res in results]
|
|
std2D2D = [res[0] for res in results_std]
|
|
std2D3D = [res[1] for res in results_std]
|
|
std3D3D = [res[2] for res in results_std]
|
|
|
|
|
|
N = 5
|
|
ind = np.asarray([0.25,1.25,2.25,3.25,4.25])
|
|
|
|
width = 0.5 # the width of the bars
|
|
|
|
# x1 = [0.4,1.4,2.4,3.4,4.4]
|
|
x2 = [0.45,1.45,2.45,3.45,4.45]
|
|
# x3 = [0.5,1.5,2.5,3.5,4.5]
|
|
x4 = [0.55,1.55,2.55,3.55,4.55]
|
|
# x5 = [0.6,1.6,2.6,3.6,4.6]
|
|
x6 = [0.50,1.50,2.50,3.50,4.50]
|
|
|
|
fig = plt.figure(figsize=(14.0, 10.0))
|
|
|
|
ax = fig.add_subplot(111)
|
|
|
|
# print mean2D2D
|
|
# print mean2D3D
|
|
|
|
# ax.axhline(linewidth=2, y = np.mean(mean2D2D),color='r')
|
|
# ax.axhline(linewidth=2, y = np.mean(mean2D3D),color='blue')
|
|
|
|
# ax.axhline(linewidth=2, y = minvaluevalue,color='black')
|
|
|
|
# ax.text(0.98, Participantmeanvalue+0.5, "Mean %.2f" % Participantmeanvalue,fontsize=12, fontweight='bold',color='r')
|
|
# ax.text(0.98, maxvaluevalue+0.5, "Maximum %.2f" % maxvaluevalue,fontsize=12, fontweight='bold',color='black')
|
|
# ax.text(0.98, minvaluevalue+0.5, "Minimum %.2f" % minvaluevalue,fontsize=12, fontweight='bold', color='black')
|
|
|
|
# rects1 = ax.bar(ind, Participantmean,width, color='r',edgecolor='black',)#, hatch='//')
|
|
rects1 = ax.errorbar(x2, mean2D2D,yerr=[std2D2D,std2D2D],fmt='o',color='red',ecolor='red',lw=3, capsize=5, capthick=2)
|
|
plt.plot(x2, mean2D2D, marker="o", linestyle='-',lw=3,color='red',label = r'2D-to-2D')
|
|
|
|
rects2 =ax.errorbar(x4, mean2D3D,yerr=[std2D3D,std2D3D],fmt='o',color='blue',ecolor='blue',lw=3, capsize=5, capthick=2)
|
|
plt.plot(x4, mean2D3D, marker="o", linestyle='-',lw=3,color='blue', label = r'2D-to-3D')
|
|
|
|
rects3 =ax.errorbar(x6, mean3D3D,yerr=[std3D3D,std3D3D],fmt='o',color='blue',ecolor='blue',lw=3, capsize=5, capthick=2)
|
|
plt.plot(x6, mean3D3D, marker="o", linestyle='-',lw=3,color='blue', label = r'3D-to-3D')
|
|
|
|
legend(fontsize=20,loc='upper right')
|
|
|
|
# rects3 = ax.errorbar(x3, meanC3,yerr=[stdC3,stdC3],fmt='o',color='black',ecolor='black',lw=3, capsize=5, capthick=2)
|
|
# plt.plot(x3, meanC3, marker="o", linestyle='-',lw=3,color='black')
|
|
#
|
|
# rects4 =ax.errorbar(x4, meanC4,yerr=[stdC4,stdC4],fmt='o',color='green',ecolor='green',lw=3, capsize=5, capthick=2)
|
|
# plt.plot(x4, meanC4, marker="o", linestyle='-',lw=3,color='green')
|
|
#
|
|
# rects5 =ax.errorbar(x5, meanC5,yerr=[stdC5,stdC5],fmt='o',color='orange',ecolor='orange',lw=3, capsize=5, capthick=2)
|
|
# plt.plot(x5, meanC5, marker="o", linestyle='-',lw=3,color='orange')
|
|
|
|
|
|
ax.set_ylabel(r'Angular Error',fontsize=22)
|
|
ax.set_xlabel(r'Number of Calibration Depths',fontsize=22)
|
|
ax.set_xticks(ind+0.25)
|
|
ax.set_xticklabels( ('D1', 'D2', 'D3','D4', 'D5') ,fontsize=18)
|
|
|
|
TOPICs = [0.0,0.5,1.5,2.5,3.5,4.5,5.0]#,110]#,120]
|
|
print TOPICs
|
|
LABELs = ["",r'1',r'2', r'3', r'4', r'5', ""]#, ""]#, ""]
|
|
|
|
# fig.canvas.set_window_title('Distance Error Correlation')
|
|
plt.xticks(TOPICs, LABELs,fontsize=18)
|
|
|
|
# legend([rects1,rects2], [r'\LARGE\textbf{2D2D}', r'\LARGE\textbf{2D3D}'], loc='lower right')
|
|
|
|
TOPICS = [0.5,1,1.5,2,2.5,3,3.5,4,4.5,5]#,110]#,120]
|
|
print TOPICS
|
|
LABELS = [r'0.5', r'1',r'1.5', r'2',r'2.5', r'3',r'3.5', r'4',r'4.5',r'5']#, ""]#, ""]
|
|
|
|
# fig.canvas.set_window_title('Accuracy - Activity Statistics')
|
|
plt.yticks(TOPICS, LABELS,fontsize=18)
|
|
|
|
def autolabel(rects):
|
|
# attach some text labels
|
|
for rect in rects:
|
|
height = rect.get_height()
|
|
ax.text(0.26+rect.get_x()+rect.get_width()/2., height +0.35, "%.2f"%float(height),
|
|
ha='center', va='bottom',fontweight='bold',fontsize=13.5)
|
|
|
|
# autolabel(rects1)
|
|
|
|
|
|
left = 0.1 # the left side of the subplots of the figure
|
|
right = 0.975 # the right side of the subplots of the figure
|
|
bottom = 0.075 # the bottom of the subplots of the figure
|
|
top = 0.925 # the top of the subplots of the figure
|
|
wspace = 0.2 # the amount of width reserved for blank space between subplots
|
|
hspace = 0.4 # the amount of height reserved for white space between subplots
|
|
|
|
plt.subplots_adjust(left=left, bottom=bottom, right=right, top=top, wspace=wspace, hspace=hspace)
|
|
plt.show()
|
|
######################################################################################################
|
|
|
|
class Parallax3Dto3DMapping(Experiment): # GT pupil pose instead of estimating the pose
|
|
'''
|
|
'''
|
|
def __run__(self):
|
|
sim = GazeSimulation(log = False)
|
|
sim.place_eyeball_on_scene_camera = False
|
|
sim.setEyeRelativeToSceneCamera(v(-65, -33, -73))
|
|
# sim.setEyeRelativeToSceneCamera(v(-65, -33, 0)) # assuming eyeball and scene camera are coplanar i.e. e = (e.x, e.y, 0)
|
|
sim.setCalibrationDepth(1 * 1000) # mm, wrt scene camera
|
|
sim.setTestDepth(1.5 * 1000)
|
|
|
|
sim.calibration_grid = True
|
|
sim.calibration_random_depth = False
|
|
sim.test_grid = True
|
|
sim.test_random_depth = False
|
|
sim.test_random_fixed_depth = False
|
|
|
|
cdepths = [1, 1.5, 2.0]
|
|
tdepths = np.linspace(1, 2, 5)
|
|
|
|
results = []
|
|
for i, cdepth in enumerate(cdepths):
|
|
sim.setCalibrationDepth(cdepth * 1000)
|
|
# Performing calibration
|
|
sim.runCalibration()
|
|
|
|
aae_2Ds = []
|
|
aae_3Ds = []
|
|
aae_3D3Ds = []
|
|
std_2Ds = []
|
|
std_3Ds = []
|
|
std_3D3Ds = []
|
|
|
|
# Fetching calibration points
|
|
t, p3d, p2d = sim.calibration_points, sim.tr_3d_pupil_locations, sim.tr_pupil_locations
|
|
# target positions are computed relative to the scene CCS
|
|
ti = map(lambda target: v(target) - v(sim.scene_camera.t), t)
|
|
# Computing pupil pose for each gaze
|
|
ni = map(lambda p: (v(p)-v(sim.sclera_pos)).norm(), p3d) # ground truth gaze vectors
|
|
|
|
eye_scene_diff = v(sim.sclera_pos) - v(sim.scene_camera.t)
|
|
e = np.array(eye_scene_diff) # eyeball coords in scene CCS
|
|
e_org = v(e[:])
|
|
|
|
# transforming pose vector to eye camera coordinates
|
|
eyeR = np.array(sim.eye_camera.R[:3]) # result is identical to cv2.Rodrigues(np.array([0., np.pi, 0.]))[0]
|
|
ni = map(lambda pose: eyeR.dot(np.array(pose)), ni)
|
|
|
|
R, e3d3d = minimizeEnergy(ni, ti, pose_given=True)
|
|
e3d3d = v(e3d3d)
|
|
# R = LA.inv(R)
|
|
|
|
w2d3d, e2d3d, w0 = minimizeEnergy(p2d, ti)
|
|
e2d3d = v(e2d3d)
|
|
|
|
print
|
|
print R
|
|
print 'e3d3d', e3d3d, 'distance =', (e3d3d-e_org).mag
|
|
print 'e2d3d', e2d3d, 'distance =', (e2d3d-e_org).mag
|
|
print 'real e', e_org
|
|
print
|
|
|
|
for j, tdepth in enumerate(tdepths):
|
|
|
|
sim.setTestDepth(tdepth * 1000)
|
|
aae_2d, _, std_2d, _ = sim.runTest()
|
|
aae_2Ds.append(aae_2d)
|
|
std_2Ds.append(std_2d)
|
|
|
|
# Fetching test points
|
|
t, p3d, p2d = sim.test_points, sim.te_3d_pupil_locations, sim.te_pupil_locations
|
|
ti = map(lambda target: v(target) - v(sim.scene_camera.t), t) # target coords in scene CCS
|
|
ni = map(lambda p: v(v(p)-v(sim.sclera_pos)).norm(), p3d) # ground truth gaze vectors
|
|
|
|
# transforming pose vector to eye camera coordinates
|
|
ni = map(lambda r: v(eyeR.dot(np.array(r))), ni)
|
|
|
|
# applying estimated rotation to pose vector in eye camera coordinates (Rn)
|
|
ni = map(lambda n: v(R.dot(np.array(n))), ni) # now ready to compare Rn with t-e
|
|
|
|
# 3D to 3D
|
|
# Intersecting gaze rays originating from the eye with the planes defined by each
|
|
# target. then we can simply compute angular error between each intersection and
|
|
# the corresponding 3D target
|
|
gis = map(lambda vec: v(vec), ni)
|
|
gprimes = map(lambda tg: v(((tg[0].z - e3d3d.z)/tg[1].z)*tg[1] + e3d3d), zip(ti, gis))
|
|
AE = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gprimes, ti))
|
|
# AE = list(np.degrees(np.arccos(v(p[0]).dot(p[1])/v(p[0]).mag/v(p[1]).mag)) for p in zip(gprimes, ti))
|
|
|
|
N = len(ti)
|
|
AAE = np.mean(AE)
|
|
STD_3D3D = np.std(AE)
|
|
m, M = min(AE), max(AE)
|
|
aae_3D3Ds.append(AAE)
|
|
std_3D3Ds.append(STD_3D3D)
|
|
|
|
# 2D to 3D
|
|
qi = map(_q, p2d) # computing feature vectors from raw pupil coordinates in 2D
|
|
# computing unit gaze vectors corresponding to pupil positions
|
|
# here we use the computed mapping matrix w
|
|
gis = map(lambda q: gaze_ray(q, w2d3d), qi)
|
|
|
|
# Intersecting gaze rays originating from the eye with the planes defined by each
|
|
# target. then we can simply compute angular error between each intersection and
|
|
# the corresponding 3D target
|
|
gis = map(lambda vec: v(vec), gis)
|
|
gprimes = map(lambda tg: v(((tg[0].z - e2d3d.z)/tg[1].z)*tg[1] + e2d3d), zip(ti, gis))
|
|
|
|
AE = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gprimes, ti))
|
|
# AE = list(np.degrees(np.arccos(v(p[0]).dot(p[1])/v(p[0]).mag/v(p[1]).mag)) for p in zip(gprimes, ti))
|
|
|
|
N = len(t)
|
|
AAE = np.mean(AE)
|
|
STD_2D3D = np.std(AE)
|
|
m, M = min(AE), max(AE)
|
|
# Computing physical distance error (in meters)
|
|
PHE = list((u-v).mag for u,v in zip(ti, gprimes))
|
|
N = len(ti)
|
|
APHE = np.mean(PHE)
|
|
PHE_STD = np.std(PHE)
|
|
PHE_m, PHE_M = min(PHE), max(PHE)
|
|
|
|
# aae_3Ds.append((AAE, STD, PHE, PHE_STD))
|
|
aae_3Ds.append(AAE)
|
|
std_3Ds.append(STD_2D3D)
|
|
# break
|
|
|
|
print 'depth', cdepth, 'finished.'
|
|
results.append([aae_2Ds, aae_3Ds, aae_3D3Ds, std_2Ds, std_3Ds, std_3D3Ds])
|
|
|
|
|
|
clrs = ['r', 'g', 'b', 'k', 'o']
|
|
colors = ['blue', 'orange', 'red', 'black', 'orange']
|
|
patches = []
|
|
|
|
fig = plt.figure(figsize=(14.0, 10.0))
|
|
ax = fig.add_subplot(111)
|
|
|
|
dmap = {0: '1', 1:'3', 2:'5'}
|
|
|
|
x1 = [0.375,1.375,2.375,3.375,4.375]
|
|
x2 = [0.425,1.425,2.425,3.425,4.425]
|
|
x3 = [0.475,1.475,2.475,3.475,4.475]
|
|
x4 = [0.525,1.525,2.525,3.525,4.525]
|
|
x5 = [0.575,1.575,2.575,3.575,4.575]
|
|
x6 = [0.625,1.625,2.625,3.625,4.625]
|
|
xrange_2d2d = [x1, x3, x5]
|
|
xrange_2d3d = [x2, x4, x6]
|
|
|
|
for i in [0, 1, 2]:
|
|
cdepth_results = results[i]
|
|
_xrange = xrange_2d2d[i]
|
|
aae_2d2d = cdepth_results[0]
|
|
std_2d2d = cdepth_results[3]
|
|
rects1 = ax.errorbar(_xrange, aae_2d2d,yerr=[std_2d2d, std_2d2d],fmt='o',color=colors[i],ecolor=colors[i],lw=3, capsize=5, capthick=2)
|
|
plt.plot(_xrange, aae_2d2d, marker="o", linestyle='-',lw=3,color=colors[i],label = '2D-to-2D Calibration Depth ' + dmap[i])
|
|
|
|
for i in [0, 1, 2]:
|
|
cdepth_results = results[i]
|
|
_xrange = xrange_2d3d[i]
|
|
aae_2d3d = cdepth_results[1]
|
|
std_2d3d = cdepth_results[4]
|
|
rects2 = ax.errorbar(_xrange, aae_2d3d,yerr=[std_2d3d, std_2d3d],fmt='o',color=colors[i],ecolor=colors[i],lw=3, capsize=5, capthick=2)
|
|
plt.plot(_xrange, aae_2d3d, marker="o", linestyle='--',lw=3,color=colors[i],label = '2D-to-3D Calibration Depth ' + dmap[i])
|
|
|
|
for i in [0, 1, 2]:
|
|
cdepth_results = results[i]
|
|
_xrange = xrange_2d2d[i]
|
|
aae_3d3d = cdepth_results[2]
|
|
std_3d3d = cdepth_results[5]
|
|
rects3 = ax.errorbar(_xrange, aae_3d3d,yerr=[std_3d3d, std_3d3d],fmt='o',color=colors[i],ecolor=colors[i],lw=3, capsize=5, capthick=2)
|
|
plt.plot(_xrange, aae_3d3d, marker="o", linestyle='-.',lw=3,color=colors[i],label = '3D-to-3D Calibration Depth ' + dmap[i])
|
|
|
|
|
|
ax.set_ylabel(r'\textbf{Angular Error}',fontsize=22)
|
|
ax.set_xlabel(r'\textbf{Depth}',fontsize=22)
|
|
# ax.set_ylim((0, 2.4))
|
|
|
|
TOPICS = [-0.2, 0, 0.2, 0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4]#,110]#,120]
|
|
LABELS = [r'', r'0', r'0.2',r'0.4',r'0.6', r'0.8', r'1.0', r'1.2', r'1.4', r'1.6', r'1.8', r'2.0', r'2.2', r'2.4']#, ""]#, ""]
|
|
|
|
plt.yticks(TOPICS, LABELS,fontsize=18)
|
|
|
|
plt.xlabel('Depth')
|
|
plt.ylabel('Angular Error')
|
|
|
|
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
|
|
ncol=3, mode="expand", borderaxespad=0., fontsize=18)
|
|
|
|
TOPICs = [0.0,0.5,1.5,2.5,3.5,4.5,5.0]
|
|
LABELs = ['', 'D1 - 1m', 'D2 - 1.25m', 'D3 - 1.5m', 'D4 - 1.75m', 'D5 - 2.0m', '']
|
|
plt.xticks(TOPICs, LABELs,fontsize=18)
|
|
|
|
left = 0.1 # the left side of the subplots of the figure
|
|
right = 0.975 # the right side of the subplots of the figure
|
|
bottom = 0.075 # the bottom of the subplots of the figure
|
|
top = 0.925 # the top of the subplots of the figure
|
|
wspace = 0.2 # the amount of width reserved for blank space between subplots
|
|
hspace = 0.4 # the amount of height reserved for white space between subplots
|
|
|
|
plt.subplots_adjust(left=left, bottom=bottom, right=right, top=top, wspace=wspace, hspace=hspace)
|
|
plt.show()
|
|
|
|
# self.sim = sim
|
|
|
|
ROOT_DATA_DIR = '/home/mmbrian/HiWi/etra2016_mohsen/code/recording/data/participants'
|
|
class Parallax2Dto2DRealData(Experiment):
|
|
'''
|
|
First it runs single calibration depth vs test depth over all combinations of depths per participant (25 cases)
|
|
Then we perform estimation with data from multiple calibration depths for each test depth
|
|
'''
|
|
def __run__(self):
|
|
sim = GazeSimulation(log = False)
|
|
camera_matrix, dist_coeffs = readCameraParams()
|
|
|
|
root_result_path = 'results/2d2d/'
|
|
if not os.path.exists(root_result_path):
|
|
os.makedirs(root_result_path)
|
|
|
|
errors = []
|
|
for d1 in os.listdir(ROOT_DATA_DIR):
|
|
if d1.startswith('p'): # every participant
|
|
if not d1 in PARTICIPANTS:
|
|
continue
|
|
participant_label = d1
|
|
participant_results = []
|
|
d2 = os.path.join(ROOT_DATA_DIR, d1) # .../pi/
|
|
d2 = os.path.join(d2, os.listdir(d2)[0]) # .../pi/../
|
|
print '> Processing participant', d1
|
|
participant_experiment = {}
|
|
for d3 in os.listdir(d2): # every recording
|
|
d4 = os.path.join(d2, d3) # .../pi/../00X/
|
|
|
|
intervals_dir = os.path.join(d4, 'gaze_intervals.npy')
|
|
if not os.path.isfile(intervals_dir):
|
|
# Participant not completely processed
|
|
print '> One or more recordings need processing...'
|
|
break
|
|
else:
|
|
|
|
p = np.load(os.path.join(d4, 'p.npy'))
|
|
break_participant = False
|
|
for point in p:
|
|
if np.isnan(point[0]):
|
|
# For this gaze position, not input with nonzero confidence exist
|
|
break_participant = True
|
|
break
|
|
if break_participant:
|
|
print '> One or more recordings miss gaze coords...'
|
|
break
|
|
# print p
|
|
t2d = np.load(os.path.join(d4, 't2d.npy'))
|
|
t3d = np.load(os.path.join(d4, 't3d.npy'))
|
|
participant_experiment[d3] = [p, t2d, t3d]
|
|
|
|
if len(participant_experiment) == 10:
|
|
print '> All recordings processed'
|
|
keys = sorted(participant_experiment.keys())
|
|
depths = zip(keys[::2], keys[1::2])
|
|
for calib_depth in depths:
|
|
cp, ct = participant_experiment[calib_depth[0]][0], participant_experiment[calib_depth[0]][1]
|
|
cdepth_value = getDepth(calib_depth)
|
|
# Perform calibration
|
|
sim.perform2D2DCalibrationOnReadData(cp, ct, (1280, 720))
|
|
for test_depth in depths:
|
|
tdepth_value = getDepth(test_depth)
|
|
tp, tt, tt3d = participant_experiment[test_depth[1]][0], participant_experiment[test_depth[1]][1], participant_experiment[test_depth[1]][2]
|
|
error = sim.run2D2DTestOnRealData(tp, tt, (1280, 720), tt3d, camera_matrix, dist_coeffs)
|
|
participant_results.append([cdepth_value, tdepth_value] + error)
|
|
print len(participant_results), 'combinations processed...'
|
|
np.save('results/2d2d/%s_2d2d_all.npy' % participant_label, np.array(participant_results))
|
|
np.savetxt('results/2d2d/%s_2d2d_all.csv' % participant_label, np.array(participant_results), delimiter=",")
|
|
|
|
print '> Computing results for multiple calibration depths...'
|
|
for num_of_calibration_depths in xrange(2, 6): # from 2 calibration depths to 5
|
|
participant_results = []
|
|
print '> Computing results for combining %s calibration depths...' % num_of_calibration_depths
|
|
for calibs in combinations(depths, num_of_calibration_depths):
|
|
# Now calibs is a set of depths, from each of those we need calibration data
|
|
cp, ct = [], []
|
|
calib_depths_label = []
|
|
for calib in calibs:
|
|
if len(cp):
|
|
cp = np.concatenate((cp, participant_experiment[calib[0]][0]), axis=0)
|
|
ct = np.concatenate((ct, participant_experiment[calib[0]][1]), axis=0)
|
|
else:
|
|
cp = participant_experiment[calib[0]][0]
|
|
ct = participant_experiment[calib[0]][1]
|
|
calib_depths_label.append(getDepth(calib))
|
|
# Perform calibration
|
|
sim.perform2D2DCalibrationOnReadData(cp, ct, (1280, 720))
|
|
# Now we have calibration data from multiple depths, we can test on all depths
|
|
for test_depth in depths:
|
|
tdepth_value = getDepth(test_depth)
|
|
tp, tt, tt3d = participant_experiment[test_depth[1]][0], participant_experiment[test_depth[1]][1], participant_experiment[test_depth[1]][2]
|
|
error = sim.run2D2DTestOnRealData(tp, tt, (1280, 720), tt3d, camera_matrix, dist_coeffs)
|
|
participant_results.append(calib_depths_label + [tdepth_value] + error)
|
|
print len(participant_results), 'combinations processed...'
|
|
result_path = 'results/2d2d/%s_calibration_depths/' % num_of_calibration_depths
|
|
if not os.path.exists(result_path):
|
|
os.makedirs(result_path)
|
|
np.save(result_path + '%s.npy' % participant_label, np.array(participant_results))
|
|
np.savetxt(result_path + '%s.csv' % participant_label, np.array(participant_results), delimiter=",")
|
|
|
|
|
|
print 'done.'
|
|
# plt.plot(tdrange, aaes)
|
|
# plt.show()
|
|
|
|
def getDepth(depth_experiments):
|
|
_map = {'000': 1, '002': 1.25, '004': 1.5, '006': 1.75, '008': 2.0}
|
|
return _map[depth_experiments[0]]
|
|
|
|
class Parallax2Dto3DRealData(Experiment):
|
|
def __run__(self):
|
|
sim = GazeSimulation(log = False)
|
|
aae_3ds = []
|
|
root_result_path = '/home/mmbrian/3D_Gaze_Tracking/work/results/2D3D/'
|
|
if not os.path.exists(root_result_path):
|
|
os.makedirs(root_result_path)
|
|
|
|
for d1 in os.listdir(ROOT_DATA_DIR):
|
|
if d1.startswith('p'): # every participant
|
|
if not d1 in PARTICIPANTS:
|
|
continue
|
|
participant_label = d1
|
|
participant_results = []
|
|
d2 = os.path.join(ROOT_DATA_DIR, d1) # .../pi/
|
|
d2 = os.path.join(d2, os.listdir(d2)[0]) # .../pi/../
|
|
print '> Processing participant', d1
|
|
participant_experiment = {}
|
|
for d3 in os.listdir(d2): # every recording
|
|
d4 = os.path.join(d2, d3) # .../pi/../00X/
|
|
|
|
intervals_dir = os.path.join(d4, 'gaze_intervals.npy')
|
|
if not os.path.isfile(intervals_dir):
|
|
# Participant not completely processed
|
|
print '> One or more recordings need processing...'
|
|
break
|
|
else:
|
|
|
|
p = np.load(os.path.join(d4, 'p.npy'))
|
|
# p = np.load(os.path.join(d4, 'p_mean.npy'))
|
|
break_participant = False
|
|
for point in p:
|
|
if np.isnan(point[0]):
|
|
# For this gaze position, not input with nonzero confidence exist
|
|
break_participant = True
|
|
break
|
|
if break_participant:
|
|
print '> One or more recordings miss gaze coords...'
|
|
break
|
|
# print p
|
|
t2d = np.load(os.path.join(d4, 't2d.npy'))
|
|
t3d = np.load(os.path.join(d4, 't3d.npy'))
|
|
# t2d = np.load(os.path.join(d4, 't2d_mean.npy'))
|
|
# t3d = np.load(os.path.join(d4, 't3d_mean.npy'))
|
|
participant_experiment[d3] = [p, t2d, t3d]
|
|
|
|
if len(participant_experiment) == 10:
|
|
print '> All recordings processed'
|
|
keys = sorted(participant_experiment.keys())
|
|
depths = zip(keys[::2], keys[1::2])
|
|
for calib_depth in depths:
|
|
cp, ct3d = participant_experiment[calib_depth[0]][0], participant_experiment[calib_depth[0]][2]
|
|
cdepth_value = getDepth(calib_depth)
|
|
|
|
# Performing calibration
|
|
w, e, w0 = minimizeEnergy(cp, ct3d)
|
|
e = v(e)
|
|
for test_depth in depths:
|
|
tdepth_value = getDepth(test_depth)
|
|
tp, tt3d = participant_experiment[test_depth[1]][0], participant_experiment[test_depth[1]][2]
|
|
|
|
t, p = tt3d, tp
|
|
qi = map(_q, p) # computing feature vectors from raw pupil coordinates in 2D
|
|
# computing unit gaze vectors corresponding to pupil positions
|
|
# here we use the computed mapping matrix w
|
|
gis = map(lambda q: g(q, w), qi)
|
|
# Intersecting gaze rays originating from the eye with the planes defined by each
|
|
# target. then we can simply compute angular error between each intersection and
|
|
# the corresponding 3D target
|
|
t = map(lambda vec: v(vec), t)
|
|
gis = map(lambda vec: v(vec), gis)
|
|
gprimes = map(lambda tg: v(((tg[0].z - e.z)/tg[1].z)*tg[1] + e), zip(t, gis))
|
|
|
|
AE = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gprimes, t))
|
|
N = len(t)
|
|
AAE = sum(AE)/N
|
|
VAR = sum((ae - AAE)**2 for ae in AE)/N
|
|
STD = np.sqrt(VAR)
|
|
m, M = min(AE), max(AE)
|
|
|
|
# Computing physical distance error (in meters)
|
|
PHE = list((u-v).mag for u,v in zip(t, gprimes))
|
|
N = len(t)
|
|
APHE = sum(PHE)/N
|
|
PHE_VAR = sum((phe - APHE)**2 for phe in PHE)/N
|
|
PHE_STD = np.sqrt(VAR)
|
|
PHE_m, PHE_M = min(PHE), max(PHE)
|
|
|
|
participant_results.append([cdepth_value, tdepth_value] + [AAE, VAR, STD, m, M, APHE, PHE_VAR, PHE_STD, PHE_m, PHE_M])
|
|
|
|
print len(participant_results), 'combinations processed...'
|
|
np.save(os.path.join(root_result_path, '%s_2d3d_all.npy' % participant_label), np.array(participant_results))
|
|
np.savetxt(os.path.join(root_result_path, '%s_2d3d_all.csv' % participant_label), np.array(participant_results), delimiter=",")
|
|
|
|
print '> Computing results for multiple calibration depths...'
|
|
for num_of_calibration_depths in xrange(2, 6): # from 2 calibration depths to 5
|
|
participant_results = []
|
|
print '> Computing results for combining %s calibration depths...' % num_of_calibration_depths
|
|
for calibs in combinations(depths, num_of_calibration_depths):
|
|
# Now calibs is a set of depths, from each of those we need calibration data
|
|
cp, ct3d = [], []
|
|
calib_depths_label = []
|
|
for calib in calibs:
|
|
if len(cp):
|
|
cp = np.concatenate((cp, participant_experiment[calib[0]][0]), axis=0)
|
|
ct3d = np.concatenate((ct3d, participant_experiment[calib[0]][2]), axis=0)
|
|
else:
|
|
cp = participant_experiment[calib[0]][0]
|
|
ct3d = participant_experiment[calib[0]][2]
|
|
calib_depths_label.append(getDepth(calib))
|
|
# Performing calibration
|
|
w, e, w0 = minimizeEnergy(cp, ct3d)
|
|
e = v(e)
|
|
# Now we have calibration data from multiple depths, we can test on all depths
|
|
for test_depth in depths:
|
|
tdepth_value = getDepth(test_depth)
|
|
tp, tt3d = participant_experiment[test_depth[1]][0], participant_experiment[test_depth[1]][2]
|
|
|
|
t, p = tt3d, tp
|
|
qi = map(_q, p)
|
|
gis = map(lambda q: g(q, w), qi)
|
|
|
|
t = map(lambda vec: v(vec), t)
|
|
gis = map(lambda vec: v(vec), gis)
|
|
gprimes = map(lambda tg: v(((tg[0].z - e.z)/tg[1].z)*tg[1] + e), zip(t, gis))
|
|
|
|
AE = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gprimes, t))
|
|
N = len(t)
|
|
AAE = sum(AE)/N
|
|
VAR = sum((ae - AAE)**2 for ae in AE)/N
|
|
STD = np.sqrt(VAR)
|
|
m, M = min(AE), max(AE)
|
|
|
|
# Computing physical distance error (in meters)
|
|
PHE = list((u-v).mag for u,v in zip(t, gprimes))
|
|
N = len(t)
|
|
APHE = sum(PHE)/N
|
|
PHE_VAR = sum((phe - APHE)**2 for phe in PHE)/N
|
|
PHE_STD = np.sqrt(VAR)
|
|
PHE_m, PHE_M = min(PHE), max(PHE)
|
|
|
|
participant_results.append(calib_depths_label + [tdepth_value] + [AAE, VAR, STD, m, M, APHE, PHE_VAR, PHE_STD, PHE_m, PHE_M])
|
|
|
|
print len(participant_results), 'combinations processed...'
|
|
result_path = os.path.join(root_result_path, '%s_calibration_depths/' % num_of_calibration_depths)
|
|
if not os.path.exists(result_path):
|
|
os.makedirs(result_path)
|
|
np.save(result_path + '%s.npy' % participant_label, np.array(participant_results))
|
|
np.savetxt(result_path + '%s.csv' % participant_label, np.array(participant_results), delimiter=",")
|
|
|
|
print 'done.'
|
|
|
|
|
|
|
|
class Parallax3Dto3DRealData(Experiment):
|
|
def __run__(self):
|
|
sim = GazeSimulation(log = False)
|
|
aae_3ds = []
|
|
|
|
root_result_path = '/home/mmbrian/3D_Gaze_Tracking/work/results/3D3D/'
|
|
root_pose_path = '/home/mmbrian/3D_Gaze_Tracking/work/Marker_Eye_Images/ImagesUndist/'
|
|
root_data_path = '/home/mmbrian/HiWi/etra2016_mohsen/code/recording/data/participants/'
|
|
take_only_nearest_neighbor_for_calibration = True
|
|
|
|
participants = ['p14']
|
|
|
|
if not os.path.exists(root_result_path):
|
|
os.makedirs(root_result_path)
|
|
|
|
for d1 in os.listdir(root_data_path):
|
|
if d1.startswith('p'): # every participant
|
|
if not d1 in participants:
|
|
# if not d1 in PARTICIPANTS:
|
|
continue
|
|
participant_label = d1
|
|
participant_results = []
|
|
d2 = os.path.join(root_data_path, d1) # .../pi/
|
|
d2 = os.path.join(d2, os.listdir(d2)[0]) # .../pi/../
|
|
print '> Processing participant', d1
|
|
participant_experiment = {}
|
|
for d3 in os.listdir(d2): # every recording
|
|
d4 = os.path.join(d2, d3) # .../pi/../00X/
|
|
|
|
# pose_info = np.loadtxt(open(os.path.join(root_pose_path+d1+'/'+d3, "null_pupils.csv"),"rb"),delimiter=";")
|
|
pose_info = np.loadtxt(open(os.path.join(root_pose_path+d1+'/'+d3, "simple_pupils.csv"),"rb"),delimiter=";")
|
|
frames_numbers = pose_info[:, 0]
|
|
pose_estimates = pose_info[:,4:7]
|
|
pose_info = dict(zip(frames_numbers, pose_estimates))
|
|
p_frames = np.load(os.path.join(d4, 'p_frames.npy'))
|
|
# print d4
|
|
# Fetching pose information for every target
|
|
poses = []
|
|
for target in p_frames:
|
|
pose = []
|
|
for fn in target: # all frames corresponding to this pupil
|
|
# first fn corresponds to the nearest neighbor
|
|
# for test use all correspondents from these 3 or 2 estimates
|
|
# i.e. each pose-marker creates a correspondence so 3*16=48 correspondents for test
|
|
# for calibration compare two cases, one similar to above take all the 75 correspondents
|
|
# and the other taking only the pose corresponding to nearest neighbor which results in
|
|
# the same number of correspondents as target markers
|
|
try:
|
|
pose.append(pose_info[fn])
|
|
except KeyError, err:
|
|
print err
|
|
poses.append(pose)
|
|
|
|
t2d = np.load(os.path.join(d4, 't2d.npy'))
|
|
t3d = np.load(os.path.join(d4, 't3d.npy'))
|
|
participant_experiment[d3] = [poses, t2d, t3d]
|
|
|
|
keys = sorted(participant_experiment.keys())
|
|
depths = zip(keys[::2], keys[1::2])
|
|
|
|
for calib_depth in depths:
|
|
pose_data, ct3d = participant_experiment[calib_depth[0]][0], participant_experiment[calib_depth[0]][2]
|
|
cdepth_value = getDepth(calib_depth)
|
|
if take_only_nearest_neighbor_for_calibration:
|
|
pose = np.array(list(p[0] for p in pose_data))
|
|
calib_3ds = ct3d[:]
|
|
else:
|
|
calib_3ds = []
|
|
pose = []
|
|
for i, p3d in enumerate(ct3d):
|
|
for p in pose_data[i]:
|
|
pose.append(p)
|
|
calib_3ds.append(p3d)
|
|
# Performing calibration
|
|
# First we convert gaze rays to actual pupil pose in our right hand coordinate system
|
|
# _pose = [(np.arctan(g.x/g.z), np.arctan(g.y/g.z)) for g in map(v, pose)]
|
|
_pose = map(v, pose)
|
|
print '> Running tests for calibration depth', cdepth_value
|
|
if any(g.z == 0 for g in _pose):
|
|
print 'Calibration is flawed'
|
|
# print pose
|
|
else:
|
|
print 'Calibration data is okay'
|
|
# print [g.mag for g in map(v, pose)]
|
|
# w, e, w0 = minimizeEnergy(_pose, calib_3ds, pose_given=True)
|
|
R, e = minimizeEnergy(pose, calib_3ds, pose_given=True)
|
|
# R = LA.inv(R)
|
|
print 'R', R
|
|
print 'e', e
|
|
|
|
e = v(e)
|
|
for test_depth in depths:
|
|
tdepth_value = getDepth(test_depth)
|
|
tpose_data, tt3d = participant_experiment[test_depth[1]][0], participant_experiment[test_depth[1]][2]
|
|
|
|
test_3ds = []
|
|
tpose = []
|
|
for i, p3d in enumerate(tt3d):
|
|
for p in tpose_data[i]:
|
|
tpose.append(p)
|
|
test_3ds.append(p3d)
|
|
|
|
# applying estimated rotation to bring pose vectors to scene camera coordinates
|
|
tpose = map(lambda p: v(R.dot(np.array(p))), tpose)
|
|
|
|
if any(g.z == 0 for g in map(v, tpose)):
|
|
print 'Test depth', tdepth_value, 'is flawed'
|
|
|
|
gis = map(lambda vec: v(vec), tpose)
|
|
t = map(lambda vec: v(vec), test_3ds)
|
|
gprimes = map(lambda tg: v(((tg[0].z - e.z)/tg[1].z)*tg[1] + e), zip(t, gis))
|
|
# AE = list(np.degrees(np.arctan((v(p[0]).cross(p[1])/(v(p[0]).dot(p[1]))).mag)) for p in zip(gprimes, t))
|
|
AE = list(np.degrees(np.arccos(v(p[0]).dot(p[1])/v(p[0]).mag/v(p[1]).mag)) for p in zip(gprimes, t))
|
|
|
|
AAE = np.mean(AE)
|
|
STD = np.std(AE)
|
|
m, M = min(AE), max(AE)
|
|
|
|
# Computing physical distance error (in meters)
|
|
PHE = list((u-v).mag for u,v in zip(t, gprimes))
|
|
APHE = np.mean(PHE)
|
|
PHE_STD = np.std(PHE)
|
|
PHE_m, PHE_M = min(PHE), max(PHE)
|
|
|
|
print 'Calibration', cdepth_value, 'Test', tdepth_value, AAE, 'degrees', APHE, 'meters'
|
|
participant_results.append([cdepth_value, tdepth_value] + [AAE, STD, m, M, APHE, PHE_STD, PHE_m, PHE_M])
|
|
|
|
print len(participant_results), 'combinations processed...'
|
|
np.save(os.path.join(root_result_path, '%s_3d3d_all.npy' % participant_label), np.array(participant_results))
|
|
np.savetxt(os.path.join(root_result_path, '%s_3d3d_all.csv' % participant_label), np.array(participant_results), delimiter=",")
|
|
|
|
|
|
def main():
|
|
if len(sys.argv) <= 1:
|
|
print 'Please select a mode.'
|
|
return
|
|
mode = sys.argv[1]
|
|
|
|
if mode == 'pts':
|
|
# Performs an experiment by fixing calibration depth and testing for different test depths
|
|
# to investigate parallax error in 2D to 2D mapping
|
|
ex = Parallax2Dto2DMapping()
|
|
ex.performExperiment()
|
|
if mode == '2d3d':
|
|
# This also does 3D gaze estimation and plots estimation results for both 3D and 2D estimation
|
|
ex = Parallax2Dto3DMapping()
|
|
ex.performExperiment()
|
|
|
|
# ex = Parallax2Dto3DMappingEye()
|
|
# ex.performExperiment()i
|
|
if mode == '2d2d_2d3d':
|
|
ex = Parallax3Dto3DMapping()
|
|
ex.performExperiment()
|
|
|
|
# ex = Parallax2Dto2DRealData()
|
|
# ex.performExperiment()
|
|
|
|
# ex = Parallax2Dto3DRealData()
|
|
# ex.performExperiment()
|
|
|
|
if mode == '3d3d_real':
|
|
ex = Parallax3Dto3DRealData()
|
|
ex.performExperiment()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|
|
|
|
|
|
|