gazesim/code/recording/retrieve.py
2016-03-09 19:52:35 +01:00

150 lines
5 KiB
Python

import sys
import numpy as np
import cv2
import matplotlib.pyplot as plt
sys.path.append('..') # so we can import from pupil
from pupil import player_methods
# from tracker import processFrame
DATA_DIR = '/home/mmbrian/HiWi/pupil_clone/pupil/recordings/2015_09_10/007/'
OUTPUT_DIR = DATA_DIR + 'pp.npy'
def capture(frame_number):
cap = cv2.VideoCapture(DATA_DIR + "world.mp4")
fc = int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT))
assert frame_number<fc
frame = 1
status, img = cap.read() # extract the first frame
while status:
if frame == frame_number:
save_dir = DATA_DIR + "frames/frame_%d.jpg" % frame_number
cv2.imwrite(save_dir, img)
break
frame+=1
status, img = cap.read()
def main():
p2d, t3d = [], [] # 2D-3D pupil position to target position correspondences
cap = cv2.VideoCapture(DATA_DIR + "world.mp4")
fc = int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT))
wt = np.load(DATA_DIR + "world_timestamps.npy")
# time is measured in seconds (floating point) since the epoch.
# world timestamps correspond to each frame, we have to correlate timestamp information from
# pupil positions and world timestamps to find a 1-to-1 mapping between pupil positions and
# marker positions in the video
print fc, len(wt)
assert fc == len(wt)
########################################################################################################
# Processing markers
# print 'Processing markers...'
## Processing frame by frame does not work as ArUco process opens a Gtk which cannot be terminated
## automatically, therefore we better process all frames before and work with the data here
# frame = 1
# status, img = cap.read() # extract the first frame
# while status:
# # cv2.imwrite(DATA_DIR + "frames/frame-%d.jpg" % frame, img)
# save_dir = DATA_DIR + "frames/current_frame.jpg"
# cv2.imwrite(save_dir, img)
# processFrame(save_dir)
# frame+=1
# status, img = cap.read()
# print "Processed %d frames." % (frame-1)
########################################################################################################
# Processing pupil positions
print 'Processing pupil positions...'
pp = np.load(DATA_DIR + "pupil_positions.npy") # timestamp confidence id pos_x pos_y diameter
# pos_x and pos_y are normalized (Origin 0,0 at the bottom left and 1,1 at the top right)
# converting each element to dictionary for correlation
pp = map(lambda e: dict(zip(['timestamp', 'conf', 'id', 'x', 'y', 'diam'], e)), pp)
pp_by_frame = player_methods.correlate_data(pp, wt)
# Keeping only pupil positions with nonzero confidence
pp_by_frame = map(lambda l: filter(lambda p: p['conf']>0, l), pp_by_frame)
# Computing a single pupil position for the frame by taking mean of all detected pupil positions
pp_by_frame = map(lambda data:
sum(np.array([pp['x'], pp['y']]) for pp in data)/len(data) if data else np.array([-1, -1]), pp_by_frame)
# Now each nonempty value of pp_by_frame is a tuple of (x, y) for pupil position in that frame
# Next we need to associate each frame to a detected marker and by taking mean pupil point and
# mean 3D marker position over a series of frames corresponding to that marker find a 2D-3D
# mapping for calibration/test
tdiff = map(lambda e: e-wt[0], wt)
# This time correspondence to each marker was coordinated using the GazeHelper android application
# for 005 > starting from 00:56, 3 seconds gaze, 1 second for saccade
# These parameters are specific to the experiment
# 005 > 56, 3, 1
# 006 > 3, 3, 1
# 007 > 7, 3, 1 (or 8)
# 010 > 3, 3, 1
starting_point, gaze_duration, saccade_duration = 56, 3, 1 # these are specific to the experiment
# finding the starting frame
ind = 0
while tdiff[ind] < starting_point:
ind+=1
print ind
data = []
tstart = wt[ind]
for i in xrange(9):
print i
while ind<len(wt) and wt[ind] - tstart < saccade_duration:
ind+=1
if ind<len(wt):
tstart = wt[ind]
starting_ind = ind
while ind<len(wt) and wt[ind] - tstart < gaze_duration:
ind+=1
# all frames from starting_ind to ind-1 correspond to currently gazed marker
c = 0
cp = np.array([0, 0])
all_corresponding_points = []
for j in xrange(starting_ind, ind):
if pp_by_frame[j][0] >= 0:
c+=1
cp = cp + pp_by_frame[j]
all_corresponding_points.append(pp_by_frame[j])
# print c
if c>0:
ret = cp/c
else:
ret = np.array([-1, -1]) # no detected pupil for this marker
p2d.append(ret)
data.append([
np.array([starting_ind, ind-1]), # frame range
ret, # mean pupil position
all_corresponding_points]) # all pupil positions in range
if ind<len(wt):
tstart = wt[ind]
# p2d is now the list of detected pupil positions (not always 9 points)
print 'Saving data...'
np.save(OUTPUT_DIR, data)
# plt.plot([x[0] if x!=None else 0 for x in pp_by_frame], [y[1] if y!=None else 0 for y in pp_by_frame], 'ro')
# plt.show()
########################################################################################################
print len(p2d), 'gaze points'
print p2d
print len(wt), 'frames...'
if __name__ == '__main__':
main()