commit 26ae91c3c039ba88f153f964c138ad5f6279d3c4 Author: Matteo Bortoletto Date: Fri May 31 16:13:33 2024 +0200 up diff --git a/README.md b/README.md new file mode 100644 index 0000000..6c67170 --- /dev/null +++ b/README.md @@ -0,0 +1,86 @@ +
+

Neural Reasoning about Agents' Goals, Preferences, and Actions

+ +**[Matteo Bortoletto][1],   [Constantin Ruhdorfer][5],   [Adnen Abdessaied][6],   [Lei Shi][2],   [Andreas Bulling][3]**

+**ACL 2024, Bangkok, Thailand**
+**[[Paper][4]]** + +
+ +# Citation + +```bibtex +@inproceedings{bortoletto24_acl, + author = {Bortoletto, Matteo and Ruhdorfer, Constantin and Abdessaied, Adnen and Shi, Lei and Bulling, Andreas}, + title = {Limits of Theory of Mind Modelling in Dialogue-Based Collaborative Plan Acquisition}, + booktitle = {Proc. 62nd Annual Meeting of the Association for Computational Linguistics (ACL)}, + year = {2024}, + pages = {1--16}, + doi = {} +} +``` + +## Dataset + +[Original Dataset](https://huggingface.co/datasets/sled-umich/MindCraft) + +[Extended Dataset](https://huggingface.co/datasets/sled-umich/MindCraft2) + + +## Code overview + +The code is based on the [original implementation](https://github.com/sled-group/collab-plan-acquisition/tree/main). + +### ToM tasks + +Baselines: +- training code: `baselines_with_dialogue_moves.py` +- bash script: `baselines_with_dialogue_moves.sh` +- model: `src/models/model_with_dialogue_moves.py` + +Graph models: +- training code: `baselines_with_dialogue_moves_graphs.py` +- bash script: `baselines_with_dialogue_moves_graphs.sh` +- model: `src/models/model_with_dialogue_moves_graphs.py` + +To extract ToM features, run `intermediate_representations.py` + +### CPA tasks + +Baselines: +- training code: `plan_predictor.py` +- bash script: `run_plan_predictor.sh` +- model: `src/models/plan_model.py` + +Baselines with ToM ground-truth as input: +- trainining code: `plan_predictor_oracle.py` +- bash script: `run_plan_predictor_oracle.sh` +- model: `src/models/plan_model_oracle.py` + +Graph models: +- training code: `plan_predictor_graphs.py` +- bash script: `run_plan_predictor_graphs.sh` +- model: `src/models/plan_model_graphs.py` + +Graph models with ToM ground-truth as input: +- training code: `plan_predictor_graphs_oracle.py` +- bash script: `run_plan_predictor_graphs_oracle.sh` +- model: `src/models/plan_model_graphs_oracle.py` + +Graph models with full candidate sampling (i.e. considering all possible candidate edges): +- training code: `plan_predictor_graphs_allcand.py` +- bash script: `run_plan_predictor_graphs_allcand.sh` +- model: `src/models/plan_model_graphs.py` (same as the constrained selection) + +Train graph model with int0 features as input: `run_plan_predictor_graphs_int0.sh` + +### Analysis +- correlation analysis: `compare_tom_cpa.ipynb` +- diagnostic probing: `logistic_regression_tom_feats.py`. To extract CPA features, use `plan_predictor_graphs_test.py` + +[1]: https://mattbortoletto.github.io/ +[2]: https://perceptualui.org/people/shi/ +[3]: https://perceptualui.org/people/bulling/ +[4]: https://arxiv.org/pdf/2405.12621 +[5]: https://perceptualui.org/people/ruhdorfer/ +[6]: https://perceptualui.org/people/abdessaied/