import torch import os import seaborn as sns import matplotlib.pyplot as plt import numpy as np from sklearn.decomposition import PCA FOLDER_PATH = "/scratch/bortoletto/dev/boss/predictions/2023-05-22_12-00-38_train_None" # no_tom seed 1 #FOLDER_PATH = "/scratch/bortoletto/dev/boss/predictions/2023-05-17_23-39-41_train_None" # impl mult seed 1 #FOLDER_PATH = "/scratch/bortoletto/dev/boss/predictions/2023-05-18_12-47-07_train_None" # impl sum seed 1 #FOLDER_PATH = "/scratch/bortoletto/dev/boss/predictions/2023-05-18_15-58-44_train_None" # impl attn seed 1 #FOLDER_PATH = "/scratch/bortoletto/dev/boss/predictions/2023-05-18_12-58-04_train_None" # impl concat seed 1 #FOLDER_PATH = "/scratch/bortoletto/dev/boss/predictions/2023-05-17_23-40-01_train_None" # cm mult seed 1 #FOLDER_PATH = "/scratch/bortoletto/dev/boss/predictions/2023-05-18_12-45-55_train_None" # cm sum seed 1 #FOLDER_PATH = "/scratch/bortoletto/dev/boss/predictions/2023-05-18_12-50-42_train_None" # cm attn seed 1 #FOLDER_PATH = "/scratch/bortoletto/dev/boss/predictions/2023-05-18_12-57-15_train_None" # cm concat seed 1 #FOLDER_PATH = "/scratch/bortoletto/dev/boss/predictions/2023-05-17_23-37-50_train_None" # db seed 1 print(FOLDER_PATH) MTOM_COLORS = { "MN1": (110/255, 117/255, 161/255), "MN2": (179/255, 106/255, 98/255), "Base": (193/255, 198/255, 208/255), "CG": (170/255, 129/255, 42/255), "IC": (97/255, 112/255, 83/255), "DB": (144/255, 63/255, 110/255) } sns.set_theme(style='white') for i in range(60): print(f'Computing analysis for test video {i}...', end='\r') emb_file = os.path.join(FOLDER_PATH, f'{i}.pt') data = torch.load(emb_file) if len(data) == 14: # implicit model = 'impl' out_left, cell_left, out_right, cell_right, feats = data[0], data[1], data[2], data[3], data[4:] out_left = out_left.squeeze(0) cell_left = cell_left.squeeze(0) out_right = out_right.squeeze(0) cell_right = cell_right.squeeze(0) elif len(data) == 13: # common mind model = 'cm' out_left, out_right, common_mind, feats = data[0], data[1], data[2], data[3:] out_left = out_left.squeeze(0) out_right = out_right.squeeze(0) common_mind = common_mind.squeeze(0) elif len(data) == 12: # speaker-listener model = 'sl' out_left, out_right, feats = data[0], data[1], data[2:] out_left = out_left.squeeze(0) out_right = out_right.squeeze(0) else: raise ValueError("Data should have 14 (impl), 13 (cm) or 12 (sl) elements!") # ====== PCA for left and right embeddings ====== # out_left_and_right = np.concatenate((out_left, out_right), axis=0) pca = PCA(n_components=2) pca_result = pca.fit_transform(out_left_and_right) # Separate the PCA results for each tensor pca_result_left = pca_result[:out_left.shape[0]] pca_result_right = pca_result[out_right.shape[0]:] plt.figure(figsize=(7,6)) plt.scatter(pca_result_left[:, 0], pca_result_left[:, 1], label='$h_1$', color=MTOM_COLORS['MN1'], s=100) plt.scatter(pca_result_right[:, 0], pca_result_right[:, 1], label='$h_2$', color=MTOM_COLORS['MN2'], s=100) plt.xlabel('Principal Component 1', fontsize=30) plt.ylabel('Principal Component 2', fontsize=30) plt.grid(False) plt.legend(fontsize=30) plt.tight_layout() plt.savefig(f'{FOLDER_PATH}/{i}_pca.pdf') plt.close()