import os import torch import numpy as np import torch.nn.functional as F import matplotlib.pyplot as plt from sklearn.decomposition import PCA import seaborn as sns FOLDER_PATH = 'PATH_TO_FOLDER' print(FOLDER_PATH) MTOM_COLORS = { "MN1": (110/255, 117/255, 161/255), "MN2": (179/255, 106/255, 98/255), "Base": (193/255, 198/255, 208/255), "CG": (170/255, 129/255, 42/255), "IC": (97/255, 112/255, 83/255), "DB": (144/255, 63/255, 110/255) } COLORS = sns.color_palette() sns.set_theme(style='white') out_left_main_mods_full_test = [] out_right_main_mods_full_test = [] cell_left_main_mods_full_test = [] cell_right_main_mods_full_test = [] cm_left_main_mods_full_test = [] cm_right_main_mods_full_test = [] for i in range(len([filename for filename in os.listdir(FOLDER_PATH) if filename.endswith('.pt')])): print(f'Computing analysis for test video {i}...', end='\r') emb_file = os.path.join(FOLDER_PATH, f'{i}.pt') data = torch.load(emb_file) if len(data) == 13: # implicit model = 'impl' out_left, cell_left, out_right, cell_right, feats = data[0], data[1], data[2], data[3], data[4:] elif len(data) == 12: # common mind model = 'cm' out_left, out_right, common_mind, feats = data[0], data[1], data[2], data[3:] elif len(data) == 11: # speaker-listener model = 'sl' out_left, out_right, feats = data[0], data[1], data[2:] else: raise ValueError("Data should have 13 (impl), others are not implemented") # ====== PCA for left and right embeddings ====== # out_left_pca = out_left[0].reshape(-1, 64) out_right_pca = out_right[0].reshape(-1, 64) out_left_and_right = np.concatenate((out_left_pca, out_right_pca), axis=0) pca = PCA(n_components=2) pca_result = pca.fit_transform(out_left_and_right) # Separate the PCA results for each tensor pca_result_left = pca_result[:out_left_pca.shape[0]] pca_result_right = pca_result[out_right_pca.shape[0]:] plt.figure(figsize=(6.8,6)) plt.scatter(pca_result_left[:, 0], pca_result_left[:, 1], label='$h_1$', color=MTOM_COLORS['MN1'], s=100) plt.scatter(pca_result_right[:, 0], pca_result_right[:, 1], label='$h_2$', color=MTOM_COLORS['MN2'], s=100) plt.xlabel('Principal Component 1', fontsize=32) plt.ylabel('Principal Component 2', fontsize=32) plt.xticks(fontsize=24) plt.xticks([-0.4, -0.2, 0.0, 0.2, 0.4]) plt.yticks(fontsize=24) plt.legend(fontsize=32) plt.tight_layout() plt.savefig(f'{FOLDER_PATH}/{i}_pca.pdf') plt.close()