mtomnet/tbd
2025-01-10 15:39:20 +01:00
..
models up 2025-01-10 15:39:20 +01:00
results up 2025-01-10 15:39:20 +01:00
utils up 2025-01-10 15:39:20 +01:00
.gitignore up 2025-01-10 15:39:20 +01:00
environment.yml up 2025-01-10 15:39:20 +01:00
README.md up 2025-01-10 15:39:20 +01:00
run_test.sh up 2025-01-10 15:39:20 +01:00
run_train.sh up 2025-01-10 15:39:20 +01:00
tbd_dataloader.py up 2025-01-10 15:39:20 +01:00
test.py up 2025-01-10 15:39:20 +01:00
train.py up 2025-01-10 15:39:20 +01:00

TBD

Data

The original code can be found here. The dataset is not directly available but must be requested using the link to the Google form provided in the README.

Installing Dependencies

Run conda env create -f environment.yml.

Train

source run_train.sh.

Test

source run_test.sh. Make sure to use the same random seed used for training, otherwise the splits will be different and you will likely have a data leakage.

Visualisations

The plots are made using utils/fb_scores_err.py (false belief analysis) and utils/similarity.py (PCA of latent representations).