mtomnet/tbd/models/tom_base.py
2025-01-10 15:39:20 +01:00

112 lines
No EOL
4.2 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import torch
import torch.nn as nn
import torchvision.models as models
from .base import CNN, MindNetLSTM
import numpy as np
class ImplicitToMnet(nn.Module):
"""
Implicit ToM net. Supports any subset of modalities
Possible aggregations: sum, mult, attn, concat
"""
def __init__(self, hidden_dim, device, resnet=False, dropout=0.1, mods=['rgb_3', 'rgb_1', 'pose', 'gaze', 'bbox']):
super(ImplicitToMnet, self).__init__()
self.mods = mods
# ---- 3rd POV Images, object and bbox ----#
if resnet:
resnet = models.resnet34(weights="IMAGENET1K_V1")
self.cnn = nn.Sequential(
*(list(resnet.children())[:-1])
)
for param in self.cnn.parameters():
param.requires_grad = False
self.rgb_ff = nn.Linear(512, hidden_dim)
else:
self.cnn = CNN(hidden_dim)
self.rgb_ff = nn.Linear(hidden_dim, hidden_dim)
self.bbox_ff = nn.Linear(4, hidden_dim)
# ---- Others ----#
self.act = nn.GELU()
self.dropout = nn.Dropout(dropout)
self.device = device
# ---- Mind nets ----#
self.mind_net_1 = MindNetLSTM(hidden_dim, dropout, mods=mods)
self.mind_net_2 = MindNetLSTM(hidden_dim, dropout, mods=[m for m in mods if m != 'gaze'])
self.m1 = nn.Linear(hidden_dim, 4)
self.m2 = nn.Linear(hidden_dim, 4)
self.m12 = nn.Linear(hidden_dim, 4)
self.m21 = nn.Linear(hidden_dim, 4)
self.mc = nn.Linear(hidden_dim, 4)
def forward(self, img_3rd_pov, img_tracker, img_battery, pose1, pose2, bbox, tracker_id, gaze):
batch_size, sequence_len, channels, height, width = img_3rd_pov.shape
if 'bbox' in self.mods:
bbox_feat = self.dropout(self.act(self.bbox_ff(bbox)))
else:
bbox_feat = None
if 'rgb_3' in self.mods:
rgb_feat = []
for i in range(sequence_len):
images_i = img_3rd_pov[:,i]
img_i_feat = self.cnn(images_i)
img_i_feat = img_i_feat.view(batch_size, -1)
rgb_feat.append(img_i_feat)
rgb_feat = torch.stack(rgb_feat, 1)
rgb_feat_3rd_pov = self.dropout(self.act(self.rgb_ff(rgb_feat)))
else:
rgb_feat_3rd_pov = None
if tracker_id == 'skele1':
out_1, cell_1, feats_1 = self.mind_net_1(rgb_feat_3rd_pov, bbox_feat, img_tracker, pose1, gaze)
out_2, cell_2, feats_2 = self.mind_net_2(rgb_feat_3rd_pov, bbox_feat, img_battery, pose2, gaze=None)
else:
out_1, cell_1, feats_1 = self.mind_net_1(rgb_feat_3rd_pov, bbox_feat, img_tracker, pose2, gaze)
out_2, cell_2, feats_2 = self.mind_net_2(rgb_feat_3rd_pov, bbox_feat, img_battery, pose1, gaze=None)
if self.aggr == 'no_tom':
m1 = self.m1(out_1).mean(1)
m2 = self.m2(out_2).mean(1)
m12 = self.m12(out_1).mean(1)
m21 = self.m21(out_2).mean(1)
mc = self.mc(out_1*out_2).mean(1) # NOTE: if no_tom then mc is computed starting from the concat of out_1 and out_2
return m1, m2, m12, m21, mc, [out_1, cell_1, out_2, cell_2] + feats_1 + feats_2
def count_parameters(model):
#return sum(p.numel() for p in model.parameters() if p.requires_grad)
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
return sum([np.prod(p.size()) for p in model_parameters])
if __name__ == "__main__":
img_3rd_pov = torch.ones(3, 5, 3, 128, 128)
img_tracker = torch.ones(3, 5, 3, 128, 128)
img_battery = torch.ones(3, 5, 3, 128, 128)
pose1 = torch.ones(3, 5, 26, 3)
pose2 = torch.ones(3, 5, 26, 3)
bbox = torch.ones(3, 5, 13, 4)
tracker_id = 'skele1'
gaze = torch.ones(3, 5, 2)
model = ImplicitToMnet(hidden_dim=64, device='cpu', resnet=False, dropout=0.5)
print(count_parameters(model))
breakpoint()
for agg in ['no_tom', 'concat', 'sum', 'mult', 'attn']:
model = ImplicitToMnet(hidden_dim=64, device='cpu', resnet=False, dropout=0.5)
out = model(img_3rd_pov, img_tracker, img_battery, pose1, pose2, bbox, tracker_id, gaze)
print(agg, out[0].shape)