Update 'README.md'
This commit is contained in:
parent
ce9c902570
commit
9cbaf48bd6
1 changed files with 23 additions and 24 deletions
47
README.md
47
README.md
|
@ -1,29 +1,22 @@
|
|||
# NSVD
|
||||
<div align="center">
|
||||
<h1> Neuro-Symbolic Visual Dialog </h1>
|
||||
|
||||
This repository contains the official code of the paper:
|
||||
**[Adnen Abdessaied][1], [Mihai Bâce][2], [Andreas Bulling][3]** <br>
|
||||
|
||||
## Neuro-Symbolic Visual Dialog [[PDF](https://perceptualui.org/publications/abdessaied22_coling.pdf)]
|
||||
|
||||
[Adnen Abdessaied](https://adnenabdessaied.de), [Mihai Bace](https://perceptualui.org/people/bace/), [Andreas Bulling](https://perceptualui.org/people/bulling/)
|
||||
International Conferenc on Computational Linguistics (COLING), 2022 / Gyeongju, Republic of Korea :kr:
|
||||
|
||||
:loudspeaker: **Oral Presentation** :loudspeaker:
|
||||
**Published at [COLING 2022][4] :kr: [[Paper][5]]** <br>
|
||||
:loudspeaker: **Oral Presentation** :loudspeaker:
|
||||
</div>
|
||||
|
||||
# Citation
|
||||
If you find our code useful or use it in your own projects, please cite our paper:
|
||||
|
||||
```
|
||||
```bibtex
|
||||
@inproceedings{abdessaied22_coling,
|
||||
author = {Abdessaied, Adnen and Bâce, Mihai and Bulling, Andreas},
|
||||
title = {{Neuro-Symbolic Visual Dialog}},
|
||||
booktitle = {Proceedings of the 29th International Conference on Computational Linguistics (COLING)},
|
||||
booktitle = {COLING},
|
||||
year = {2022},
|
||||
pages = {192--217},
|
||||
month = {oct},
|
||||
year = {2022},
|
||||
address = {Gyeongju, Republic of Korea},
|
||||
publisher = {International Committee on Computational Linguistics},
|
||||
url = {https://aclanthology.org/2022.coling-1.17},
|
||||
pages = "192--217",
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -81,13 +74,13 @@ cd preprocess_dialogs
|
|||
|
||||
For the stack encoder, execute
|
||||
|
||||
```python
|
||||
```bash
|
||||
python preprocess.py --input_dialogs_json <path_to_raw_dialog_file> --input_vocab_json '' --output_vocab_json <path_where_to_save_the_vocab> --output_h5_file <path_of_the_output_file> --split <train/val/test> --mode stack
|
||||
```
|
||||
|
||||
For the concat encoder, execute
|
||||
|
||||
```python
|
||||
```bash
|
||||
python preprocess.py --input_dialogs_json <path_to_raw_dialog_file> --input_vocab_json '' --output_vocab_json <path_where_to_save_the_vocab> --output_h5_file <path_of_the_output_file> --split <train/val/test> --mode concat
|
||||
```
|
||||
|
||||
|
@ -103,7 +96,7 @@ cd ../prog_generator
|
|||
|
||||
To train the caption parser, execute
|
||||
|
||||
```python
|
||||
```bash
|
||||
python train_caption_parser.py --mode train --run_dir <experiment_dir> --res_path <path_to_store_results> --dataPathTr <path_to_preprocessed_training_data> --dataPathVal <path_to_preprocessed_val_data> --dataPathTest <path_to_preprocessed_test_data> --vocab_path <path_where_to_save_the_vocab>
|
||||
```
|
||||
|
||||
|
@ -111,13 +104,13 @@ python train_caption_parser.py --mode train --run_dir <experiment_dir> --res_pat
|
|||
|
||||
To train the question program parser with the stack encoder, execute
|
||||
|
||||
```python
|
||||
```bash
|
||||
python train_question_parser.py --mode train --run_dir <experiment_dir> --text_log_dir <log_dir_path> --dataPathTr <path_to_preprocessed_training_data> --dataPathVal <path_to_preprocessed_val_data> --dataPathTest <path_to_preprocessed_test_data> --scenePath <path_to_derendered_scenes> --vocab_path <path_where_to_save_the_vocab> --encoder_type 2
|
||||
```
|
||||
|
||||
To train the question program parser with the concat encoder, execute
|
||||
|
||||
```python
|
||||
```bash
|
||||
python train_question_parser.py --mode train --run_dir <experiment_dir> --text_log_dir <log_dir_path> --dataPathTr <path_to_preprocessed_training_data> --dataPathVal <path_to_preprocessed_val_data> --dataPathTest <path_to_preprocessed_test_data> --scenePath <path_to_derendered_scenes> --vocab_path <path_where_to_save_the_vocab> --encoder_type 1
|
||||
```
|
||||
|
||||
|
@ -131,13 +124,13 @@ python train_question_parser.py --mode train --run_dir <experiment_dir> --text_l
|
|||
|
||||
To evaluate using the *Hist+GT* scheme, execute
|
||||
|
||||
```python
|
||||
```bash
|
||||
python train_question_parser.py --mode test_with_gt --run_dir <experiment_dir> --text_log_dir <log_dir_path> --dataPathTr <path_to_preprocessed_training_data> --dataPathVal <path_to_preprocessed_val_data> --dataPathTest <path_to_preprocessed_test_data> --scenePath <path_to_derendered_scenes> --vocab_path <path_where_to_save_the_vocab> --encoder_type <1/2> --questionNetPath <path_to_pretrained_question_parser> --captionNetPath <path_to_pretrained_caption_parser> --dialogLen <total_number_of_dialog_rounds> --last_n_rounds <number_of_last_rounds_to_considered_in_history>
|
||||
```
|
||||
|
||||
To evaluate using the *Hist+Pred* scheme, execute
|
||||
|
||||
```python
|
||||
```bash
|
||||
python train_question_parser.py --mode test_with_pred --run_dir <experiment_dir> --text_log_dir <log_dir_path> --dataPathTr <path_to_preprocessed_training_data> --dataPathVal <path_to_preprocessed_val_data> --dataPathTest <path_to_preprocessed_test_data> --scenePath <path_to_derendered_scenes> --vocab_path <path_where_to_save_the_vocab> --encoder_type <1/2> --questionNetPath <path_to_pretrained_question_parser> --captionNetPath <path_to_pretrained_caption_parser> --dialogLen <total_number_of_dialog_rounds> --last_n_rounds <number_of_last_rounds_to_considered_in_history>
|
||||
```
|
||||
|
||||
|
@ -175,6 +168,12 @@ We thank [Ahmed Shah](https://www.linkedin.com/in/mahmedshah/) for his MAC-XXX i
|
|||
|
||||
# Contributors
|
||||
|
||||
- [Adnen Abdessaied](https://adnenabdessaied.de)
|
||||
- [Adnen Abdessaied][1]
|
||||
|
||||
For any questions or enquiries, don't hesitate to contact the above contributor.
|
||||
|
||||
[1]: https://adnenabdessaied.de
|
||||
[2]: https://perceptualui.org/people/bace/
|
||||
[3]: https://perceptualui.org/people/bulling/
|
||||
[4]: https://coling2022.org/
|
||||
[5]: https://aclanthology.org/2022.coling-1.17.pdf
|
Loading…
Reference in a new issue