129 lines
4.6 KiB
C++
129 lines
4.6 KiB
C++
|
#include <opencv2/core/core.hpp>
|
||
|
|
||
|
#include <vector>
|
||
|
|
||
|
#include "caffe/layers/pose_data_layer.hpp"
|
||
|
|
||
|
namespace caffe {
|
||
|
|
||
|
template <typename Dtype>
|
||
|
void PoseDataLayer<Dtype>::DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
|
||
|
const vector<Blob<Dtype>*>& top) {
|
||
|
batch_size_ = this->layer_param_.memory_data_param().batch_size();
|
||
|
channels_ = this->layer_param_.memory_data_param().channels();
|
||
|
height_ = this->layer_param_.memory_data_param().height();
|
||
|
width_ = this->layer_param_.memory_data_param().width();
|
||
|
size_ = channels_ * height_ * width_;
|
||
|
CHECK_GT(batch_size_ * size_, 0) <<
|
||
|
"batch_size, channels, height, and width must be specified and"
|
||
|
" positive in memory_data_param";
|
||
|
int label_shape_[] = {batch_size_, 4};
|
||
|
vector<int> label_shape(label_shape_, label_shape_+2);
|
||
|
top[0]->Reshape(batch_size_, channels_, height_, width_);
|
||
|
top[1]->Reshape(label_shape);
|
||
|
added_data_.Reshape(batch_size_, channels_, height_, width_);
|
||
|
added_label_.Reshape(label_shape);
|
||
|
data_ = NULL;
|
||
|
labels_ = NULL;
|
||
|
added_data_.cpu_data();
|
||
|
added_label_.cpu_data();
|
||
|
}
|
||
|
|
||
|
template <typename Dtype>
|
||
|
void PoseDataLayer<Dtype>::AddDatumVector(const vector<Datum>& datum_vector) {
|
||
|
CHECK(!has_new_data_) <<
|
||
|
"Can't add data until current data has been consumed.";
|
||
|
size_t num = datum_vector.size();
|
||
|
CHECK_GT(num, 0) << "There is no datum to add.";
|
||
|
CHECK_EQ(num % batch_size_, 0) <<
|
||
|
"The added data must be a multiple of the batch size.";
|
||
|
added_data_.Reshape(num, channels_, height_, width_);
|
||
|
int label_shape_[] = {(int)num, 4};
|
||
|
vector<int> label_shape(label_shape_, label_shape_+2);
|
||
|
added_label_.Reshape(label_shape);
|
||
|
// Apply data transformations (mirror, scale, crop...)
|
||
|
this->data_transformer_->Transform(datum_vector, &added_data_);
|
||
|
// Copy Labels
|
||
|
Dtype* top_label = added_label_.mutable_cpu_data();
|
||
|
for (int item_id = 0; item_id < num; ++item_id) {
|
||
|
top_label[item_id] = datum_vector[item_id].label();
|
||
|
}
|
||
|
// num_images == batch_size_
|
||
|
Dtype* top_data = added_data_.mutable_cpu_data();
|
||
|
Reset(top_data, top_label, num);
|
||
|
has_new_data_ = true;
|
||
|
}
|
||
|
|
||
|
template <typename Dtype>
|
||
|
void PoseDataLayer<Dtype>::AddMatVector(const vector<cv::Mat>& mat_vector,
|
||
|
const vector<float>& labels) {
|
||
|
size_t num = mat_vector.size();
|
||
|
CHECK(!has_new_data_) <<
|
||
|
"Can't add mat until current data has been consumed.";
|
||
|
CHECK_GT(num, 0) << "There is no mat to add";
|
||
|
CHECK_EQ(num % batch_size_, 0) <<
|
||
|
"The added data must be a multiple of the batch size.";
|
||
|
added_data_.Reshape(num, channels_, height_, width_);
|
||
|
int label_shape_[] = {(int)num, 4};
|
||
|
vector<int> label_shape(label_shape_, label_shape_+2);
|
||
|
added_label_.Reshape(label_shape);
|
||
|
// Apply data transformations (mirror, scale, crop...)
|
||
|
this->data_transformer_->Transform(mat_vector, &added_data_);
|
||
|
// Copy Labels
|
||
|
Dtype* top_label = added_label_.mutable_cpu_data();
|
||
|
for (int item_id = 0; item_id < num; ++item_id) {
|
||
|
top_label[item_id] = labels[item_id];
|
||
|
}
|
||
|
// num_images == batch_size_
|
||
|
Dtype* top_data = added_data_.mutable_cpu_data();
|
||
|
Reset(top_data, top_label, num);
|
||
|
has_new_data_ = true;
|
||
|
}
|
||
|
|
||
|
template <typename Dtype>
|
||
|
void PoseDataLayer<Dtype>::Reset(Dtype* data, Dtype* labels, int n) {
|
||
|
CHECK(data);
|
||
|
CHECK(labels);
|
||
|
CHECK_EQ(n % batch_size_, 0) << "n must be a multiple of batch size";
|
||
|
// Warn with transformation parameters since a memory array is meant to
|
||
|
// be generic and no transformations are done with Reset().
|
||
|
//if (this->layer_param_.has_transform_param()) {
|
||
|
// LOG(WARNING) << this->type() << " does not transform array data on Reset()";
|
||
|
//}
|
||
|
data_ = data;
|
||
|
labels_ = labels;
|
||
|
n_ = n;
|
||
|
pos_ = 0;
|
||
|
}
|
||
|
|
||
|
template <typename Dtype>
|
||
|
void PoseDataLayer<Dtype>::set_batch_size(int new_size) {
|
||
|
CHECK(!has_new_data_) <<
|
||
|
"Can't change batch_size until current data has been consumed.";
|
||
|
batch_size_ = new_size;
|
||
|
added_data_.Reshape(batch_size_, channels_, height_, width_);
|
||
|
int label_shape_[] = {(int)batch_size_, 4};
|
||
|
vector<int> label_shape(label_shape_, label_shape_+2);
|
||
|
added_label_.Reshape(label_shape);
|
||
|
}
|
||
|
|
||
|
template <typename Dtype>
|
||
|
void PoseDataLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
|
||
|
const vector<Blob<Dtype>*>& top) {
|
||
|
CHECK(data_) << "PoseDataLayer needs to be initalized by calling Reset";
|
||
|
top[0]->Reshape(batch_size_, channels_, height_, width_);
|
||
|
int label_shape_[] = {(int)batch_size_, 4};
|
||
|
vector<int> label_shape(label_shape_, label_shape_+2);
|
||
|
added_label_.Reshape(label_shape);
|
||
|
top[0]->set_cpu_data(data_ + pos_ * size_);
|
||
|
top[1]->set_cpu_data(labels_ + pos_);
|
||
|
pos_ = (pos_ + batch_size_) % n_;
|
||
|
if (pos_ == 0)
|
||
|
has_new_data_ = false;
|
||
|
}
|
||
|
|
||
|
INSTANTIATE_CLASS(PoseDataLayer);
|
||
|
REGISTER_LAYER_CLASS(PoseData);
|
||
|
|
||
|
} // namespace caffe
|