2022-05-09 14:32:31 +02:00
|
|
|
# VisRecall: Quantifying Information Visualisation Recallability via Question Answering
|
2022-11-13 21:45:09 +01:00
|
|
|
[![Identifier](https://img.shields.io/badge/doi-10.18419%2Fdarus--2826-d45815.svg)](https://doi.org/10.18419/darus-2826)
|
2022-05-09 14:32:31 +02:00
|
|
|
|
|
|
|
*Yao Wang, Chuhan Jiao(Aalto University), Mihai Bâce and Andreas Bulling*
|
|
|
|
|
2022-11-13 21:45:09 +01:00
|
|
|
IEEE Transactions on Visualization and Computer Graphics (TVCG)
|
2022-05-09 14:32:31 +02:00
|
|
|
|
|
|
|
This repository contains the dataset and models for predicting visualisation recallability.
|
|
|
|
|
|
|
|
```
|
|
|
|
$Root Directory
|
|
|
|
│
|
|
|
|
│─ README.md —— this file
|
|
|
|
│
|
|
|
|
|─ RecallNet —— Source code of the network to predict infovis recallability
|
|
|
|
│ │
|
|
|
|
│ │─ environment.yaml —— conda environments
|
|
|
|
│ │
|
|
|
|
│ │─ notebooks
|
|
|
|
│ │ │
|
|
|
|
│ │ │─ train_RecallNet.ipynb —— main notebook for training and validation
|
|
|
|
│ │ │
|
|
|
|
│ │ └─ massvis_recall.json —— saved recallability scores for MASSVIS dataset
|
|
|
|
│ │
|
|
|
|
│ └─ src
|
|
|
|
│ │
|
|
|
|
│ │─ singleduration_models.py —— RecallNet model
|
|
|
|
│ │
|
|
|
|
│ │─ sal_imp_utilities.py —— image processing utilities
|
|
|
|
│ │
|
|
|
|
│ │─ losses_keras2.py —— loss functions
|
|
|
|
│ │
|
|
|
|
│ ...
|
2022-08-16 15:27:19 +02:00
|
|
|
│
|
|
|
|
│
|
|
|
|
│─ WebInterface —— The Web interface for experiment, see WebInterface/README.md
|
|
|
|
│
|
2022-05-09 14:32:31 +02:00
|
|
|
│
|
|
|
|
└─ VisRecall —— The dataset
|
|
|
|
│
|
|
|
|
│─ answer_raw —— raw answers from AMT workers
|
|
|
|
│
|
|
|
|
│─ merged
|
|
|
|
│ │
|
|
|
|
│ │─ src —— original images
|
|
|
|
│ │
|
|
|
|
│ │─ qa —— question annotations
|
|
|
|
│ │
|
|
|
|
│ └─ image_annotation —— other metadata annotations
|
|
|
|
│
|
|
|
|
└─ training_data
|
|
|
|
│
|
|
|
|
│─ all —— all averaged questions
|
|
|
|
│
|
|
|
|
└─ X-question —— a specific type of question (T-, FE-, F-, RV-, U-)
|
|
|
|
```
|
|
|
|
|
2022-11-13 21:45:09 +01:00
|
|
|
If you think this repository is useful to you, please consider citing our work as:
|
|
|
|
|
|
|
|
```
|
2022-11-14 10:26:06 +01:00
|
|
|
@article{wang22_tvcg,
|
|
|
|
title = {VisRecall: Quantifying Information Visualisation Recallability via Question Answering},
|
|
|
|
author = {Wang, Yao and Jiao, Chuhan and Bâce, Mihai and Bulling, Andreas},
|
|
|
|
year = {2022},
|
|
|
|
pages = {4995-5005},
|
|
|
|
journal = {IEEE Transactions on Visualization and Computer Graphics (TVCG)},
|
|
|
|
volume = {28},
|
|
|
|
number = {12},
|
|
|
|
doi = {10.1109/TVCG.2022.3198163}
|
|
|
|
}
|
2022-11-13 21:45:09 +01:00
|
|
|
```
|
2022-05-09 14:32:31 +02:00
|
|
|
|
2022-08-16 15:27:19 +02:00
|
|
|
contact: yao.wang@vis.uni-stuttgart.de
|