visrecall/README.md

74 lines
2.2 KiB
Markdown
Raw Permalink Normal View History

2022-05-09 14:32:31 +02:00
# VisRecall: Quantifying Information Visualisation Recallability via Question Answering
2022-11-13 21:45:09 +01:00
[![Identifier](https://img.shields.io/badge/doi-10.18419%2Fdarus--2826-d45815.svg)](https://doi.org/10.18419/darus-2826)
2022-05-09 14:32:31 +02:00
*Yao Wang, Chuhan Jiao(Aalto University), Mihai Bâce and Andreas Bulling*
2022-11-13 21:45:09 +01:00
IEEE Transactions on Visualization and Computer Graphics (TVCG)
2022-05-09 14:32:31 +02:00
This repository contains the dataset and models for predicting visualisation recallability.
```
$Root Directory
│─ README.md —— this file
|─ RecallNet —— Source code of the network to predict infovis recallability
│ │
│ │─ environment.yaml —— conda environments
│ │
│ │─ notebooks
│ │ │
│ │ │─ train_RecallNet.ipynb —— main notebook for training and validation
│ │ │
│ │ └─ massvis_recall.json —— saved recallability scores for MASSVIS dataset
│ │
│ └─ src
│ │
│ │─ singleduration_models.py —— RecallNet model
│ │
│ │─ sal_imp_utilities.py —— image processing utilities
│ │
│ │─ losses_keras2.py —— loss functions
│ │
│ ...
2022-08-16 15:27:19 +02:00
│─ WebInterface —— The Web interface for experiment, see WebInterface/README.md
2022-05-09 14:32:31 +02:00
└─ VisRecall —— The dataset
│─ answer_raw —— raw answers from AMT workers
│─ merged
│ │
│ │─ src —— original images
│ │
│ │─ qa —— question annotations
│ │
│ └─ image_annotation —— other metadata annotations
└─ training_data
│─ all —— all averaged questions
└─ X-question —— a specific type of question (T-, FE-, F-, RV-, U-)
```
2022-11-13 21:45:09 +01:00
If you think this repository is useful to you, please consider citing our work as:
```
2022-11-14 10:26:06 +01:00
@article{wang22_tvcg,
title = {VisRecall: Quantifying Information Visualisation Recallability via Question Answering},
author = {Wang, Yao and Jiao, Chuhan and Bâce, Mihai and Bulling, Andreas},
year = {2022},
pages = {4995-5005},
journal = {IEEE Transactions on Visualization and Computer Graphics (TVCG)},
volume = {28},
number = {12},
doi = {10.1109/TVCG.2022.3198163}
}
2022-11-13 21:45:09 +01:00
```
2022-05-09 14:32:31 +02:00
2022-08-16 15:27:19 +02:00
contact: yao.wang@vis.uni-stuttgart.de