54 lines
1.6 KiB
Markdown
54 lines
1.6 KiB
Markdown
|
# VisRecall: Quantifying Information Visualisation Recallability via Question Answering
|
||
|
|
||
|
*Yao Wang, Chuhan Jiao(Aalto University), Mihai Bâce and Andreas Bulling*
|
||
|
|
||
|
submitted to The IEEE Transactions on Visualization and Computer Graphics (TVCG2022)
|
||
|
|
||
|
This repository contains the dataset and models for predicting visualisation recallability.
|
||
|
|
||
|
```
|
||
|
$Root Directory
|
||
|
│
|
||
|
│─ README.md —— this file
|
||
|
│
|
||
|
|─ RecallNet —— Source code of the network to predict infovis recallability
|
||
|
│ │
|
||
|
│ │─ environment.yaml —— conda environments
|
||
|
│ │
|
||
|
│ │─ notebooks
|
||
|
│ │ │
|
||
|
│ │ │─ train_RecallNet.ipynb —— main notebook for training and validation
|
||
|
│ │ │
|
||
|
│ │ └─ massvis_recall.json —— saved recallability scores for MASSVIS dataset
|
||
|
│ │
|
||
|
│ └─ src
|
||
|
│ │
|
||
|
│ │─ singleduration_models.py —— RecallNet model
|
||
|
│ │
|
||
|
│ │─ sal_imp_utilities.py —— image processing utilities
|
||
|
│ │
|
||
|
│ │─ losses_keras2.py —— loss functions
|
||
|
│ │
|
||
|
│ ...
|
||
|
│
|
||
|
└─ VisRecall —— The dataset
|
||
|
│
|
||
|
│─ answer_raw —— raw answers from AMT workers
|
||
|
│
|
||
|
│─ merged
|
||
|
│ │
|
||
|
│ │─ src —— original images
|
||
|
│ │
|
||
|
│ │─ qa —— question annotations
|
||
|
│ │
|
||
|
│ └─ image_annotation —— other metadata annotations
|
||
|
│
|
||
|
└─ training_data
|
||
|
│
|
||
|
│─ all —— all averaged questions
|
||
|
│
|
||
|
└─ X-question —— a specific type of question (T-, FE-, F-, RV-, U-)
|
||
|
```
|
||
|
|
||
|
|
||
|
contact: yao.wang@vis.uni-stuttgart.de
|