# VisRecall: Quantifying Information Visualisation Recallability via Question Answering *Yao Wang, Chuhan Jiao(Aalto University), Mihai Bâce and Andreas Bulling* submitted to The IEEE Transactions on Visualization and Computer Graphics (TVCG2022) This repository contains the dataset and models for predicting visualisation recallability. ``` $Root Directory │ │─ README.md —— this file │ |─ RecallNet —— Source code of the network to predict infovis recallability │ │ │ │─ environment.yaml —— conda environments │ │ │ │─ notebooks │ │ │ │ │ │─ train_RecallNet.ipynb —— main notebook for training and validation │ │ │ │ │ └─ massvis_recall.json —— saved recallability scores for MASSVIS dataset │ │ │ └─ src │ │ │ │─ singleduration_models.py —— RecallNet model │ │ │ │─ sal_imp_utilities.py —— image processing utilities │ │ │ │─ losses_keras2.py —— loss functions │ │ │ ... │ │ │─ WebInterface —— The Web interface for experiment, see WebInterface/README.md │ │ └─ VisRecall —— The dataset │ │─ answer_raw —— raw answers from AMT workers │ │─ merged │ │ │ │─ src —— original images │ │ │ │─ qa —— question annotations │ │ │ └─ image_annotation —— other metadata annotations │ └─ training_data │ │─ all —— all averaged questions │ └─ X-question —— a specific type of question (T-, FE-, F-, RV-, U-) ``` contact: yao.wang@vis.uni-stuttgart.de