visrecall/RecallNet/src/gaussian_prior_new.py

242 lines
9.3 KiB
Python

from __future__ import division
from keras.engine.base_layer import Layer
from keras import backend as K
from keras import activations
from keras import initializers
from keras import regularizers
from keras import constraints
import numpy as np
import tensorflow as tf
def gaussian_priors_init(shape, name=None, dtype=None):
means = np.random.uniform(low=0.3, high=0.7, size=shape[0] // 2)
covars = np.random.uniform(low=0.05, high=0.3, size=shape[0] // 2)
return K.variable(np.concatenate((means, covars), axis=0), name=name)
class LearningPrior(Layer):
def __init__(self, nb_gaussian, init=None, weights=None,
W_regularizer=None, activity_regularizer=None,
W_constraint=None, **kwargs):
self.nb_gaussian = nb_gaussian
if not init:
self.init = tf.initializers.random_uniform() #replaced from gaussian_priors_init
else:
self.init = initializers.get(init)
self.W_regularizer = regularizers.get(W_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.initial_weights = weights
super(LearningPrior, self).__init__(**kwargs)
def build(self, input_shape):
self.W_shape = (self.nb_gaussian*4, )
self.W = self.add_weight(shape=self.W_shape,
initializer= self.init,
name='{}_W'.format(self.name),
regularizer=self.W_regularizer,
constraint=self.W_constraint )
# Possibly unnecessary
self.regularizers = []
if self.W_regularizer:
self.W_regularizer.set_param(self.W)
self.regularizers.append(self.W_regularizer)
# Possibly unnecessary
self.constraints = {}
if self.W_constraint:
self.constraints[self.W] = self.W_constraint
# Possibly unnecessary
if self.activity_regularizer:
self.activity_regularizer.set_layer(self)
self.regularizers.append(self.activity_regularizer)
# Not changed because same syntax in Keras 2
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
self.built = True
super(LearningPrior, self).build(input_shape)
def compute_output_shape(self, input_shape):
return (input_shape[0], input_shape[1], input_shape[2], self.nb_gaussian)
def call(self, x):
mu_x = self.W[:self.nb_gaussian]
mu_y = self.W[self.nb_gaussian:self.nb_gaussian*2]
sigma_x = self.W[self.nb_gaussian*2:self.nb_gaussian*3]
sigma_y = self.W[self.nb_gaussian*3:]
self.b_s = x.shape[0].value
self.height = x.shape[1].value
self.width = x.shape[2].value
e = self.height / self.width
e1 = (1 - e) / 2
e2 = e1 + e
mu_x = K.clip(mu_x, 0.25, 0.75)
mu_y = K.clip(mu_y, 0.35, 0.65)
sigma_x = K.clip(sigma_x, 0.1, 0.9)
sigma_y = K.clip(sigma_y, 0.2, 0.8)
x_t = K.dot(K.ones((self.height, 1)), K.expand_dims(self._linspace(0, 1.0, self.width), axis=0))
y_t = K.dot(K.expand_dims(self._linspace(e1, e2, self.height), axis=1), K.ones((1, self.width)))
x_t = K.repeat_elements(K.expand_dims(x_t, axis=-1), self.nb_gaussian, axis=-1)
y_t = K.repeat_elements(K.expand_dims(y_t, axis=-1), self.nb_gaussian, axis=-1)
gaussian = 1 / (2 * np.pi * sigma_x * sigma_y + K.epsilon()) * \
K.exp(-((x_t - mu_x) ** 2 / (2 * sigma_x ** 2 + K.epsilon()) +
(y_t - mu_y) ** 2 / (2 * sigma_y ** 2 + K.epsilon())))
max_gauss = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.max(K.max(gaussian, axis=0), axis=0), axis=0), self.width, axis=0), axis=0), self.height, axis=0)
gaussian = gaussian / max_gauss
output = K.ones_like(K.expand_dims(x[...,0]))*gaussian
return output
@staticmethod
def _linspace(start, stop, num):
lin = np.linspace(start, stop, num)
range = tf.convert_to_tensor(lin, dtype='float32')
return range
def get_config(self):
config = {'nb_gaussian': self.nb_gaussian,
# 'init': self.init.__name__,
'W_regularizer': self.W_regularizer.get_config() if self.W_regularizer else None,
'activity_regularizer': self.activity_regularizer.get_config() if self.activity_regularizer else None,
'W_constraint': self.W_constraint.get_config() if self.W_constraint else None,
}
base_config = super(LearningPrior, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class OldLearningPrior(Layer):
def __init__(self, nb_gaussian, init='normal', weights=None,
W_regularizer=None, activity_regularizer=None,
W_constraint=None, **kwargs):
self.nb_gaussian = nb_gaussian
self.init = initializations.get(init, dim_ordering='th')
self.W_regularizer = regularizers.get(W_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.input_spec = [InputSpec(ndim=4)]
self.initial_weights = weights
super(LearningPrior, self).__init__(**kwargs)
def build(self, input_shape):
self.W_shape = (self.nb_gaussian*4, )
# Might need change
self.W = self.init(self.W_shape, name='{}_W'.format(self.name))
# Might need change - to self.add_weight
self.trainable_weights = [self.W]
# Might need change - could be absorbed by add_weight
self.regularizers = []
if self.W_regularizer:
self.W_regularizer.set_param(self.W)
self.regularizers.append(self.W_regularizer)
if self.activity_regularizer:
self.activity_regularizer.set_layer(self)
self.regularizers.append(self.activity_regularizer)
# Might need change
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
# Might need change
self.constraints = {}
if self.W_constraint:
self.constraints[self.W] = self.W_constraint
def get_output_shape_for(self, input_shape):
self.b_s = input_shape[0]
self.height = input_shape[2]
self.width = input_shape[3]
return self.b_s, self.nb_gaussian, self.height, self.width
def call(self, x, mask=None):
mu_x = self.W[:self.nb_gaussian]
mu_y = self.W[self.nb_gaussian:self.nb_gaussian*2]
sigma_x = self.W[self.nb_gaussian*2:self.nb_gaussian*3]
sigma_y = self.W[self.nb_gaussian*3:]
# Needs change
self.b_s = x.shape[0]
self.height = x.shape[2]
self.width = x.shape[3]
e = self.height / self.width
e1 = (1 - e) / 2
e2 = e1 + e
mu_x = K.clip(mu_x, 0.25, 0.75)
mu_y = K.clip(mu_y, 0.35, 0.65)
sigma_x = K.clip(sigma_x, 0.1, 0.9)
sigma_y = K.clip(sigma_y, 0.2, 0.8)
x_t = T.dot(T.ones((self.height, 1)), self._linspace(0, 1.0, self.width).dimshuffle('x', 0))
y_t = T.dot(self._linspace(e1, e2, self.height).dimshuffle(0, 'x'), T.ones((1, self.width)))
x_t = K.repeat_elements(K.expand_dims(x_t, dim=-1), self.nb_gaussian, axis=-1)
y_t = K.repeat_elements(K.expand_dims(y_t, dim=-1), self.nb_gaussian, axis=-1)
gaussian = 1 / (2 * np.pi * sigma_x * sigma_y + K.epsilon()) * \
T.exp(-((x_t - mu_x) ** 2 / (2 * sigma_x ** 2 + K.epsilon()) +
(y_t - mu_y) ** 2 / (2 * sigma_y ** 2 + K.epsilon())))
gaussian = K.permute_dimensions(gaussian, (2, 0, 1))
max_gauss = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.max(K.max(gaussian, axis=1), axis=1)), self.height, axis=-1)), self.width, axis=-1)
gaussian = gaussian / max_gauss
output = K.repeat_elements(K.expand_dims(gaussian, dim=0), self.b_s, axis=0)
return output
@staticmethod
def _linspace(start, stop, num):
# produces results identical to:
# np.linspace(start, stop, num)
start = T.cast(start, floatX)
stop = T.cast(stop, floatX)
num = T.cast(num, floatX)
step = (stop - start) / (num - 1)
return T.arange(num, dtype=floatX) * step + start
def get_config(self):
config = {'nb_gaussian': self.nb_gaussian,
'init': self.init.__name__,
'W_regularizer': self.W_regularizer.get_config() if self.W_regularizer else None,
'activity_regularizer': self.activity_regularizer.get_config() if self.activity_regularizer else None,
'W_constraint': self.W_constraint.get_config() if self.W_constraint else None,
}
base_config = super(LearningPrior, self).get_config()
return dict(list(base_config.items()) + list(config.items()))