HOIGaze/utils/hot3d_aria_dataset.py
2025-04-30 14:15:00 +02:00

137 lines
No EOL
6.5 KiB
Python

from torch.utils.data import Dataset
import numpy as np
import os
class hot3d_aria_dataset(Dataset):
def __init__(self, data_dir, subjects, seq_len, actions = 'all', object_num=1, sample_rate=1):
if actions == 'all':
actions = ['room', 'kitchen', 'office']
self.sample_rate = sample_rate
self.dataset = self.load_data(data_dir, subjects, seq_len, actions, object_num)
def load_data(self, data_dir, subjects, seq_len, actions, object_num):
dataset = []
file_names = sorted(os.listdir(data_dir))
gaze_file_names = []
hand_file_names = []
hand_joint_file_names = []
head_file_names = []
object_left_file_names = []
object_right_file_names = []
for name in file_names:
name_split = name.split('_')
subject = name_split[0]
action = name_split[2]
if subject in subjects and action in actions:
data_type = name_split[-1][:-4]
if(data_type == 'gaze'):
gaze_file_names.append(name)
if(data_type == 'hand'):
hand_file_names.append(name)
if(data_type == 'handjoints'):
hand_joint_file_names.append(name)
if(data_type == 'head'):
head_file_names.append(name)
if(data_type == 'bbxleft'):
object_left_file_names.append(name)
if(data_type == 'bbxright'):
object_right_file_names.append(name)
segments_number = len(hand_file_names)
# print("segments number {}".format(segments_number))
for i in range(segments_number):
gaze_data_path = data_dir + gaze_file_names[i]
gaze_data = np.load(gaze_data_path)
num_frames = gaze_data.shape[0]
if num_frames < seq_len:
continue
hand_data_path = data_dir + hand_file_names[i]
hand_data = np.load(hand_data_path)
hand_joint_data_path = data_dir + hand_joint_file_names[i]
hand_joint_data_all = np.load(hand_joint_data_path)
hand_joint_data = hand_joint_data_all[:, :120]
attended_hand_gt = hand_joint_data_all[:, 120:121]
attended_hand_baseline = hand_joint_data_all[:, 121:122]
head_data_path = data_dir + head_file_names[i]
head_data = np.load(head_data_path)
object_left_data_path = data_dir + object_left_file_names[i]
object_left_data = np.load(object_left_data_path)
object_right_data_path = data_dir + object_right_file_names[i]
object_right_data = np.load(object_right_data_path)
left_hand_translation = hand_data[:, 0:3]
right_hand_translation = hand_data[:, 22:25]
head_direction = head_data[:, 0:3]
head_translation = head_data[:, 3:6]
gaze_direction = gaze_data[:, 0:3]
object_left_bbx = []
object_right_bbx = []
for item in range(object_num):
left_bbx = object_left_data[:, item*24:item*24+24]
right_bbx = object_right_data[:, item*24:item*24+24]
if len(object_left_bbx) == 0:
object_left_bbx = left_bbx
object_right_bbx = right_bbx
else:
object_left_bbx = np.concatenate((object_left_bbx, left_bbx), axis=1)
object_right_bbx = np.concatenate((object_right_bbx, right_bbx), axis=1)
#object_left_positions = np.mean(object_left_bbx.reshape(num_frames, object_num, 8, 3), axis=2).reshape(num_frames, -1)
#object_right_positions = np.mean(object_right_bbx.reshape(num_frames, object_num, 8, 3), axis=2).reshape(num_frames, -1)
data = gaze_direction
data = np.concatenate((data, left_hand_translation), axis=1)
data = np.concatenate((data, right_hand_translation), axis=1)
data = np.concatenate((data, head_translation), axis=1)
data = np.concatenate((data, hand_joint_data), axis=1)
data = np.concatenate((data, head_direction), axis=1)
if object_num > 0:
data = np.concatenate((data, object_left_bbx), axis=1)
data = np.concatenate((data, object_right_bbx), axis=1)
data = np.concatenate((data, attended_hand_gt), axis=1)
data = np.concatenate((data, attended_hand_baseline), axis=1)
fs = np.arange(0, num_frames - seq_len + 1)
fs_sel = fs
for i in np.arange(seq_len - 1):
fs_sel = np.vstack((fs_sel, fs + i + 1))
fs_sel = fs_sel.transpose()
seq_sel = data[fs_sel, :]
seq_sel = seq_sel[0::self.sample_rate, :, :]
if len(dataset) == 0:
dataset = seq_sel
else:
dataset = np.concatenate((dataset, seq_sel), axis=0)
return dataset
def __len__(self):
return np.shape(self.dataset)[0]
def __getitem__(self, item):
return self.dataset[item]
if __name__ == "__main__":
data_dir = "/scratch/hu/pose_forecast/hot3d_hoigaze/"
seq_len = 15
actions = 'all'
all_subjects = ['P0001', 'P0002', 'P0003', 'P0009', 'P0010', 'P0011', 'P0012', 'P0014', 'P0015']
train_subjects = ['P0009', 'P0010', 'P0011', 'P0012', 'P0014', 'P0015']
object_num = 1
sample_rate = 10
train_dataset = hot3d_aria_dataset(data_dir, train_subjects, seq_len, actions, object_num, sample_rate)
print("Training data size: {}".format(train_dataset.dataset.shape))
hand_joint_dominance = train_dataset[:, :, -2:-1].flatten()
print("right hand ratio: {:.2f}".format(np.sum(hand_joint_dominance)/hand_joint_dominance.shape[0]*100))
#test_subjects = ['P0001', 'P0002', 'P0003']
#sample_rate = 8
#test_dataset = hot3d_aria_dataset(data_dir, test_subjects, seq_len, actions, #object_num, sample_rate)
# print("Test data size: {}".format(test_dataset.dataset.shape))
#hand_joint_dominance = test_dataset[:, :, -2:-1].flatten()
#print("right hand ratio: {:.2f}".format(np.sum(hand_joint_dominance)/hand_joint_dominance.shape[0]*100))