137 lines
No EOL
6.5 KiB
Python
137 lines
No EOL
6.5 KiB
Python
from torch.utils.data import Dataset
|
|
import numpy as np
|
|
import os
|
|
|
|
|
|
class hot3d_aria_dataset(Dataset):
|
|
def __init__(self, data_dir, subjects, seq_len, actions = 'all', object_num=1, sample_rate=1):
|
|
if actions == 'all':
|
|
actions = ['room', 'kitchen', 'office']
|
|
self.sample_rate = sample_rate
|
|
self.dataset = self.load_data(data_dir, subjects, seq_len, actions, object_num)
|
|
|
|
def load_data(self, data_dir, subjects, seq_len, actions, object_num):
|
|
dataset = []
|
|
file_names = sorted(os.listdir(data_dir))
|
|
gaze_file_names = []
|
|
hand_file_names = []
|
|
hand_joint_file_names = []
|
|
head_file_names = []
|
|
object_left_file_names = []
|
|
object_right_file_names = []
|
|
for name in file_names:
|
|
name_split = name.split('_')
|
|
subject = name_split[0]
|
|
action = name_split[2]
|
|
if subject in subjects and action in actions:
|
|
data_type = name_split[-1][:-4]
|
|
if(data_type == 'gaze'):
|
|
gaze_file_names.append(name)
|
|
if(data_type == 'hand'):
|
|
hand_file_names.append(name)
|
|
if(data_type == 'handjoints'):
|
|
hand_joint_file_names.append(name)
|
|
if(data_type == 'head'):
|
|
head_file_names.append(name)
|
|
if(data_type == 'bbxleft'):
|
|
object_left_file_names.append(name)
|
|
if(data_type == 'bbxright'):
|
|
object_right_file_names.append(name)
|
|
|
|
segments_number = len(hand_file_names)
|
|
# print("segments number {}".format(segments_number))
|
|
for i in range(segments_number):
|
|
gaze_data_path = data_dir + gaze_file_names[i]
|
|
gaze_data = np.load(gaze_data_path)
|
|
num_frames = gaze_data.shape[0]
|
|
if num_frames < seq_len:
|
|
continue
|
|
hand_data_path = data_dir + hand_file_names[i]
|
|
hand_data = np.load(hand_data_path)
|
|
hand_joint_data_path = data_dir + hand_joint_file_names[i]
|
|
hand_joint_data_all = np.load(hand_joint_data_path)
|
|
hand_joint_data = hand_joint_data_all[:, :120]
|
|
attended_hand_gt = hand_joint_data_all[:, 120:121]
|
|
attended_hand_baseline = hand_joint_data_all[:, 121:122]
|
|
|
|
head_data_path = data_dir + head_file_names[i]
|
|
head_data = np.load(head_data_path)
|
|
object_left_data_path = data_dir + object_left_file_names[i]
|
|
object_left_data = np.load(object_left_data_path)
|
|
object_right_data_path = data_dir + object_right_file_names[i]
|
|
object_right_data = np.load(object_right_data_path)
|
|
|
|
left_hand_translation = hand_data[:, 0:3]
|
|
right_hand_translation = hand_data[:, 22:25]
|
|
head_direction = head_data[:, 0:3]
|
|
head_translation = head_data[:, 3:6]
|
|
gaze_direction = gaze_data[:, 0:3]
|
|
object_left_bbx = []
|
|
object_right_bbx = []
|
|
for item in range(object_num):
|
|
left_bbx = object_left_data[:, item*24:item*24+24]
|
|
right_bbx = object_right_data[:, item*24:item*24+24]
|
|
if len(object_left_bbx) == 0:
|
|
object_left_bbx = left_bbx
|
|
object_right_bbx = right_bbx
|
|
else:
|
|
object_left_bbx = np.concatenate((object_left_bbx, left_bbx), axis=1)
|
|
object_right_bbx = np.concatenate((object_right_bbx, right_bbx), axis=1)
|
|
|
|
#object_left_positions = np.mean(object_left_bbx.reshape(num_frames, object_num, 8, 3), axis=2).reshape(num_frames, -1)
|
|
#object_right_positions = np.mean(object_right_bbx.reshape(num_frames, object_num, 8, 3), axis=2).reshape(num_frames, -1)
|
|
|
|
data = gaze_direction
|
|
data = np.concatenate((data, left_hand_translation), axis=1)
|
|
data = np.concatenate((data, right_hand_translation), axis=1)
|
|
data = np.concatenate((data, head_translation), axis=1)
|
|
data = np.concatenate((data, hand_joint_data), axis=1)
|
|
data = np.concatenate((data, head_direction), axis=1)
|
|
if object_num > 0:
|
|
data = np.concatenate((data, object_left_bbx), axis=1)
|
|
data = np.concatenate((data, object_right_bbx), axis=1)
|
|
data = np.concatenate((data, attended_hand_gt), axis=1)
|
|
data = np.concatenate((data, attended_hand_baseline), axis=1)
|
|
|
|
fs = np.arange(0, num_frames - seq_len + 1)
|
|
fs_sel = fs
|
|
for i in np.arange(seq_len - 1):
|
|
fs_sel = np.vstack((fs_sel, fs + i + 1))
|
|
fs_sel = fs_sel.transpose()
|
|
seq_sel = data[fs_sel, :]
|
|
seq_sel = seq_sel[0::self.sample_rate, :, :]
|
|
if len(dataset) == 0:
|
|
dataset = seq_sel
|
|
else:
|
|
dataset = np.concatenate((dataset, seq_sel), axis=0)
|
|
return dataset
|
|
|
|
def __len__(self):
|
|
return np.shape(self.dataset)[0]
|
|
|
|
def __getitem__(self, item):
|
|
return self.dataset[item]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
data_dir = "/scratch/hu/pose_forecast/hot3d_hoigaze/"
|
|
seq_len = 15
|
|
actions = 'all'
|
|
all_subjects = ['P0001', 'P0002', 'P0003', 'P0009', 'P0010', 'P0011', 'P0012', 'P0014', 'P0015']
|
|
train_subjects = ['P0009', 'P0010', 'P0011', 'P0012', 'P0014', 'P0015']
|
|
object_num = 1
|
|
sample_rate = 10
|
|
|
|
train_dataset = hot3d_aria_dataset(data_dir, train_subjects, seq_len, actions, object_num, sample_rate)
|
|
print("Training data size: {}".format(train_dataset.dataset.shape))
|
|
|
|
hand_joint_dominance = train_dataset[:, :, -2:-1].flatten()
|
|
print("right hand ratio: {:.2f}".format(np.sum(hand_joint_dominance)/hand_joint_dominance.shape[0]*100))
|
|
|
|
#test_subjects = ['P0001', 'P0002', 'P0003']
|
|
#sample_rate = 8
|
|
#test_dataset = hot3d_aria_dataset(data_dir, test_subjects, seq_len, actions, #object_num, sample_rate)
|
|
# print("Test data size: {}".format(test_dataset.dataset.shape))
|
|
|
|
#hand_joint_dominance = test_dataset[:, :, -2:-1].flatten()
|
|
#print("right hand ratio: {:.2f}".format(np.sum(hand_joint_dominance)/hand_joint_dominance.shape[0]*100)) |