initial commit
This commit is contained in:
commit
a82bbc593e
129 changed files with 33981 additions and 0 deletions
247
models/backbones/moes_original.py
Normal file
247
models/backbones/moes_original.py
Normal file
|
@ -0,0 +1,247 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
||||
from timm.models.layers import DropPath
|
||||
|
||||
class Mlp(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
hidden_features=None,
|
||||
out_features=None,
|
||||
act_layer=nn.GELU,
|
||||
drop=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
attn_drop=0.0,
|
||||
proj_drop=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
B, N, C = x.shape
|
||||
qkv = (
|
||||
self.qkv(x)
|
||||
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
||||
.permute(2, 0, 3, 1, 4)
|
||||
)
|
||||
q, k, v = (
|
||||
qkv[0],
|
||||
qkv[1],
|
||||
qkv[2],
|
||||
) # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
if mask is not None:
|
||||
if mask.dim() != x.dim():
|
||||
expanded_mask = mask[:, None, None, :].expand(B, 1, N, N)
|
||||
else:
|
||||
expanded_mask = mask
|
||||
expanded_mask = expanded_mask.bool()
|
||||
attn = attn.masked_fill(~expanded_mask, float("-inf"))
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x, attn
|
||||
|
||||
|
||||
class MoELayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads,
|
||||
mlp_ratio=4.0,
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
drop=0.0,
|
||||
attn_drop=0.0,
|
||||
drop_path=0.0,
|
||||
act_layer=nn.SiLU,
|
||||
norm_layer=LlamaRMSNorm,
|
||||
):
|
||||
super().__init__()
|
||||
self.norm_att = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
attn_drop=attn_drop,
|
||||
proj_drop=drop,
|
||||
)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
# EXPERT CONSTRUCTION
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
|
||||
|
||||
# Spatial expert
|
||||
self.norm_spatial = norm_layer(dim)
|
||||
self.mlp_spatial = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
|
||||
# Temporal expert
|
||||
self.norm_temp = norm_layer(dim)
|
||||
self.mlp_temp = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
|
||||
# Vis expert
|
||||
self.norm_vis = norm_layer(dim)
|
||||
self.mlp_vis = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
|
||||
# caption expert
|
||||
self.norm_cap = norm_layer(dim)
|
||||
self.mlp_cap = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
|
||||
# history expert
|
||||
self.norm_hist = norm_layer(dim)
|
||||
self.mlp_hist = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
|
||||
# Fusion expert
|
||||
self.norm_fusion = norm_layer(dim)
|
||||
self.mlp_fusion = Mlp(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop,
|
||||
)
|
||||
|
||||
# expert_flag:{Only Text : 00 , Only Image : 01, Fusion : 10, Text & Image : 11} (BINARY)
|
||||
|
||||
# expert_flag:
|
||||
# 0:
|
||||
|
||||
def forward(self, x, special_toks_indices, expert_flag, mask=None):
|
||||
x_shortcut, attn = self.attn(self.norm_att(x), mask=mask)
|
||||
x = x + self.drop_path(x_shortcut)
|
||||
bs, h_dim = x.size(0), x.size(-1)
|
||||
device = x.device
|
||||
|
||||
if expert_flag == 'modalities':
|
||||
end_index = special_toks_indices.get('<temporal>', special_toks_indices['<caption>'])
|
||||
spatial_feats = x[:, special_toks_indices['<spatial>']: end_index, :]
|
||||
spatial_feats = spatial_feats + self.drop_path(self.mlp_spatial(self.norm_spatial(spatial_feats)))
|
||||
spatial_index = torch.arange(special_toks_indices['<spatial>'], end_index, device=device)
|
||||
spatial_index = spatial_index.unsqueeze(0).unsqueeze(-1)
|
||||
spatial_index = spatial_index.repeat(bs, 1, h_dim)
|
||||
x = x.scatter(1, spatial_index, spatial_feats)
|
||||
# x[:, special_toks_indices['<spatial>']: special_toks_indices['<temporal>'], :] = spatial_feats
|
||||
|
||||
end_index = special_toks_indices.get('<history>', special_toks_indices['</s>'])
|
||||
caption_feats = x[:, special_toks_indices['<caption>']: end_index, :]
|
||||
caption_feats = caption_feats + self.drop_path(self.mlp_cap(self.norm_cap(caption_feats)))
|
||||
caption_index = torch.arange(special_toks_indices['<caption>'], end_index, device=device)
|
||||
caption_index = caption_index.unsqueeze(0).unsqueeze(-1)
|
||||
caption_index = caption_index.repeat(bs, 1, h_dim)
|
||||
x = x.scatter(1, caption_index, caption_feats)
|
||||
|
||||
# x[:, special_toks_indices['<caption>']: special_toks_indices['</s>'], :] = caption_feats
|
||||
|
||||
if '<temporal>' in special_toks_indices:
|
||||
temporal_feats = x[:, special_toks_indices['<temporal>']: special_toks_indices['<caption>'], :]
|
||||
temporal_feats = temporal_feats + self.drop_path(self.mlp_temp(self.norm_temp(temporal_feats)))
|
||||
temporal_index = torch.arange(special_toks_indices['<temporal>'], special_toks_indices['<caption>'], device=device)
|
||||
temporal_index = temporal_index.unsqueeze(0).unsqueeze(-1)
|
||||
temporal_index = temporal_index.repeat(bs, 1, h_dim)
|
||||
x = x.scatter(1, temporal_index, temporal_feats)
|
||||
|
||||
# x[:, special_toks_indices['<temporal>']: special_toks_indices['<caption>'], :] = temporal_feats
|
||||
|
||||
vis_feats = x[:, special_toks_indices['<vis>']: special_toks_indices['<caption>'], :]
|
||||
vis_feats = vis_feats + self.drop_path(self.mlp_vis(self.norm_vis(vis_feats)))
|
||||
vis_index = torch.arange(special_toks_indices['<vis>'], special_toks_indices['<caption>'], device=device)
|
||||
vis_index = vis_index.unsqueeze(0).unsqueeze(-1)
|
||||
vis_index = vis_index.repeat(bs, 1, h_dim)
|
||||
x = x.scatter(1, vis_index, vis_feats)
|
||||
|
||||
# x[:, special_toks_indices['<vis>']: special_toks_indices['<caption>'], :] = vis_feats
|
||||
|
||||
if '<history>' in special_toks_indices:
|
||||
history_feats = x[:, special_toks_indices['<history>']: special_toks_indices['</s>'], :]
|
||||
history_feats = history_feats + self.drop_path(self.mlp_hist(self.norm_hist(history_feats)))
|
||||
history_index = torch.arange(special_toks_indices['<history>'], special_toks_indices['</s>'], device=device)
|
||||
history_index = history_index.unsqueeze(0).unsqueeze(-1)
|
||||
history_index = history_index.repeat(bs, 1, h_dim)
|
||||
x = x.scatter(1, history_index, history_feats)
|
||||
|
||||
elif expert_flag == 'fusion':
|
||||
x = x + self.drop_path(self.mlp_fusion(self.norm_fusion(x)))
|
||||
|
||||
return x, attn
|
||||
|
||||
# if expert_flag == 2:
|
||||
# x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
# elif expert_flag == 0:
|
||||
# x = (x[:, -it_split:])
|
||||
# x = x + self.drop_path(self.sentence_mlp(self.sentence_norm(x)))
|
||||
# elif expert_flag == 1:
|
||||
# x = (x[:, :-it_split ])
|
||||
# x = x + self.drop_path(self.image_mlp(self.image_norm(x)))
|
||||
# elif expert_flag == 3:
|
||||
# text, image = (x[:, :it_split], x[:, it_split:],)
|
||||
# text = text + self.drop_path(self.sentence_mlp(self.sentence_norm(text)))
|
||||
# image = image + self.drop_path(self.image_mlp(self.image_norm(image)))
|
||||
# x = torch.cat([text, image], dim=1)
|
||||
# elif expert_flag == 4:
|
||||
# x = x + self.drop_path(self.generation_mlp(self.generation_norm(x)))
|
||||
# return x, attn
|
Loading…
Add table
Add a link
Reference in a new issue